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Chapter 1

What is OODA?

The �elds of human endeavor currently known as statistics, data science and
data analytic have been radically transformed over the recent past. These trans-
formations have been driven simultaneously by a massive increase in computa-
tional capabilities coupled with a rapidly growing scienti�c appetite for ever
deeper understanding and insights. The notion of data matrix, with perhaps
columns used for cases, and rows for measurements (i.e. features) provides a
useful paradigm for understanding important aspects of how these �elds are
evolving. In particular, the currently popular context of Big Data is easily seen
to have several quite di�erent facets, ranging from low dimension high sample
size areas (the basis of classical mathematical statistical thought, which is per-
haps typi�ed by census data), through both high dimension and sample sizes
(common for internet scale data sets of many types), and on to high dimen-
sion low sample size contexts (frequently encountered in areas such as genetics
and other types of extremely rich but relatively expensive measurements). The
pressing need to analyze data in this wide array of contexts has generated many
exciting new ideas and approaches.

Yet a deeper look into these developments suggests that the organization of
data into a matrix may itself be imposing limitations. In particular, there is a
growing realization that the challenges presented by Big Data are being eclipsed
by the perhaps far greater challenges of Complex Data, which are typically not
easily represented as an unconstrained matrix of numbers. Object Oriented Data
Analysis (OODA) provides a useful general framework for the consideration of
many types of Complex Data. It is deliberately intended to be particularly
useful in the analysis of data in complicated situations, diverse examples of
which are given in later sections of this chapter. The phrase OODA in this
context was coined by Wang and Marron [223]. An overview of the area was
given in Marron and Alonso [145].

The OODA viewpoint is easily understood through taking data objects to
be the atoms of a statistical analysis, where atom is meant in the sense of
elementary particle, studied in several contexts of increasing complexity:
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CHAPTER 1. WHAT IS OODA? 5

� In a �rst course in statistics atoms are numbers, and the goal is to develop
methods for understanding of variation in populations of numbers.

� A more advanced course, termed multivariate analysis in the statistical
culture, generalizes the atoms, i.e. the data objects from numbers to
vectors and involves a host of methods for managing uncertainty in that
context.

� A currently very fashionable area in statistics is functional data analysis
(FDA), where the goal is to analyze the variation in a population of curves.
A good introduction to this vibrant research area, where functions are the
data objects, can be found in Ramsay and Silver an [177], [178]. An
example, illustrating many of the basic concepts of FDA, which are useful
for understanding OODA is given in Section 1.1.

� OODA provides the next step in terms of complexity of atoms of a sta-
tistical analysis to a wide array of more complicated objects. Several of
these are illustrated using real data examples in Sections 1.3 to 1.6.

A good question is: What is the value added to applied statistics and data
science from the concept of OODA and its attendant terminology? The termi-
nology is based on very substantial real world experience with a wide variety of
complex data sets. A fact that rapidly becomes clear in the course of interdisci-
plinary research is that there frequently are substantial hurdles in terminology.
Especially at the beginning of such endeavors, it can feel like collaborators are
even speaking di�erent languages, so often serious e�ort needs to be devoted
to the development of a common set of de�nitions just to carry on a useful
discussion. An added complication is that for complex data contexts, it is fre-
quently not obvious how to even �get a handle on the data�. Usually there are
many options available, which are most e�ectively decided upon through careful
discussion between domain scientists and statisticians. In such discussions, the
issue of what should be the data objects? has proven to frequently lead to useful
choices, thus resulting in an e�ective and insightful data analysis.

Real data examples, demonstrating data objects choices in a variety of real
data contexts are given in the following sections. In particular, Section 1.3 shows
an example where shapes are the data objects, which require special treatment
as shapes are most naturally viewed as points on a curved manifold. Section
1.4 considers a perhaps even more challenging data set of tree structured data
objects, where an overview of various choices that have been made is given.
The data objects in Section 1.5 are recordings of sounds, in particular human
spoken words, which bring special challenges in the choice of data objects. A
deep variation of FDA involves curves with interesting variation in phase in place
of, or in addition to the usual amplitude variation, discussed in Section 1.2. It
is seen that the notion of data objects provides a particularly useful format for
discussing the modes of variation. Finally, in Section 1.6, a fun example with
images of faces as data objects in considered.

One more general feature of OODA is that there are frequently three major
phases of this type of data analysis:
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1. Object de�nition. This is the phase where the fundamental issue of what
should be the data objects is addressed. A number of examples of this
provided in the rest of this chapter and also in further examples in other
sections.

2. Exploratory Analysis. Here the goal is to �nd perhaps surprising structure
in data, often using some type of visualization method. A wide variety of
examples and methods for exploratory analysis are given in the rest of this
Chapter and in Chapters 4, 5, 6, 7, 9 and 9. While exploratory analysis
frequently only appears sparingly in most classical statistics courses, it
is usually more prominent in machine learning. However it has a strong
statistical tradition, going back well before the ideas nicely summarize in
Tukey [217].

3. Con�rmatory Analysis. While many great discoveries have been made
using exploratory methods, it is also very easy to make discoveries that
are not real, in the sense of being non-reproducible sampling artifacts. For
this reason it is very important to validate such discoveries. This critical
topic and many variations of approaches to it is discussed in detail in the
very large classical statistical literature. Some less well known aspects,
that are particularly relevant to OODA are discussed in Chapter 12.

A companion website to this book, containing links to available software, the
Matlab programs used to generate the Figures in this book, and additional
graphics can be found at Marron [146].

Further discussion on other ideas and nomenclature related to OODA can
be found in Chapter 3.

1.1 Curves as Data Objects

An interesting example of functional data analysis (viewed here as an important
special case of OODA) is the Spanish Mortality Data, �rst studied from an FDA
viewpoint in Section 2 of Marron and Alonso [145]. Such data sets are available
at the Human Mortality Database of Wilmoth and Shkolnikov [231]. For a given
population (e.g. citizens of one country) mortality data are generally a matrix
with rows and columns indexed by years and ages. The matrix entries are the
chance of a person of each age dying in the given year, calculated as the number
of deaths during that year - age pair, divided by the number of people. Here we
study mortality of males in Spain, mostly because there are interesting features
in the data, due to Spain's recent history.

There are several data object choices to be made in the analysis of this
data. First, since these probabilities range over several orders of magnitude,
logarithms are useful to provide good visual separation across a wide range of
scales. Particularly strong interpretability comes from the choice of log10 of the
probability. The utility of this data object choice is demonstrated in Figure 1.1,
where the raw probabilities are shown in the left panel (with much interesting
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1.2 Amplitude and Phase Data Objects

The OODA way of thinking has also proven to be especially useful in another
area of FDA, as discussed in the survey paper [141]. As noted in Marron et
al [140], that part of FDA is sometimes called curve registration, because it is
very useful in situations where the curve data objects are clearly misaligned.
An interesting example of this, from Koch et al [121] and [139], is shown in
Figure 1.7. The data objects here are proteomics mass spectrometry pro�les
from Ho [101], a larger study of bio-markers in Acute Myeloid Leukemia. A
detailed description of this data set including a number of pre-processing steps
(including median smoothing and interpolation to an equally spaced grid) can
be found in Koch et al [121]. Essentially there are 5 patients, represented as
colors, with 3 replicate curves for each patient, thus 15 curves in all, shown
in the top part of the top panel. Each curve shows Total Ion Counts (TIC).
for each mass to charge ratio (horizontal coordinate). The TIC curves have
many peaks, which correspond to various peptides. A common goal of mass
spectrometry analyses is curve registration, i.e. �nding deformations, sometimes
called warpings, of the horizontal axis to properly align the peaks so that they
chemically correspond. In most contexts it is hard to quantitatively assess the
performance of a given registration, but this data set is special because the
locations of several of the actual peptide peaks have been (laboriously) found
for each curve using additional information as detailed in Koch et al [121]. These
peak locations, for each of the 15 curves, are indicated by peak numbers (1-14),
with colors corresponding to the curves. The peak numbers are sorted vertically
by height of the corresponding peak and connected with gray line segments to
give some visual correspondence. It is hard to see much pattern, showing this
to be a challenging curve registration problem.
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Figure 1.7: Top panel contains raw TIC curves (top), with a labeling of certain
important peaks in the lower part of the panel. Bottom panel shows a Fisher-
Rao registration of the TIC curves. Numbers under the curves indicate peak
locations, showing that the registration has been mostly quite e�ective.

There are a number of approaches to this type of data challenge, with several
such analyses of this data set discussed in Koch et al [139]. The bottom panel of
Figure 1.7 shows the results of registration of these same TIC curves using the
Fisher Rao method proposed in Srivastava et al. [200] and Kurtek et al [124],
using only the curves themselves and not the peak location information. The
colored numbers reveal that this is a particularly challenging problem, because
the peaks have quite di�erent heights across patients. Peak 10 is particularly
challenging as it is quite low for the red patient (especially compared to nearby
very tall peaks), yet is the highest peak for other patients. Note the alignment is
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not perfect for every numbered peak, but it is still of impressively high quality.
Since such time warpings, of the horizontal axis provide an appealing ap-

proach to registration as shown in Figure 1.7, many methods have been devel-
oped for this. An overview of these have been discussed in [141]. An important
point of that paper is that this same mathematical approach is useful more
generally than to simply align curves. While in some contexts, such as that
of Figure 1.7, the phase component is merely nuisance variation to be dealt
with but of no intrinsic interest, there are many situations where the warps
themselves represent useful modes of variation. In such contexts it is insightful
to think of amplitude data objects, whose variation is contained in the aligned
curves, and phase data objects which are the warps used to achieve the align-
ment. Depending on the context either or both choices of data object can be of
primary interest, or either could represent just nuisance variation.

The notions of amplitude and phase data objects are illustrated in the sim-
ulated example shown in Figure 1.8. The upper left panel shows a simulated
functional data set, where every data object (curve) has two peaks and is a mul-
tiple of a beta mixture probability density. A rainbow color scheme is used to
distinguish the curves, in order of how separated the peaks are. The peaks have
both di�erent heights showing substantial amplitude variation, and also quite
di�erent locations re�ecting strong phase variation. These modes of variation
are decomposed in a useful way by the warping functions shown in the bottom
left panel, computed using the Fisher Rao method of Srivastava et al. [200].
The vertical axis is the same as in the upper left panel. Rescaling that axis
using the purple warp functions moves the purple peaks inwards, and using the
red warp functions moves the red peaks outwards. The top right panel shows
the amplitude data objects, i.e. aligned curves. A careful look shows that the
random peak heights are linearly related with the left peak being high when the
right peak is low. This set of data objects has just a one dimensional mode of
variation. The warps in the lower right panel can be thought of as the phase
data objects, although they are not easy to interpret. Enhanced interpretation
of the variation in the phase data objects comes from the view in the lower left
panel. That is an application of each of the warps to the Kärcher mean template
from the Fisher-Rao calculation, which nicely re�ects the one dimensional phase
variation.
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time registered, to obtain the 113 curves shown in the far left panel of Figure 1.9.
Figure 3 of Lu and Marron Ramsay et al [179] shows a variety of PCA type scores
plots. The middle left panel shows the version based on the method of Principal
Nested Spheres (PNS), from Jung et al [116], which makes special use of the
fact that Fisher-Rao data objects naturally lie on a high dimensional sphere.
Most PCA variations seem to indicate a homogeneous population. The value
added of using this method which takes the curvature of the sphere properly
into account, is that it shows two clear clusters, which are highlighted using the
graphical technique of brushing, i.e. visually separating the cluster through the
use of colors and symbols. See Yu et al [237] for more discussion of how and why
PNS provides enhanced statistical analysis of Fisher Rao phase data objects.
The analysis of Lu and Marron [133] shows that the clusters shown in the center
left panel of Figure 1.9 represent important underlying structure in the data.
this is also seen in the two right hand panels of Figure 1.9, which show actual
vertical and horizontal locations of the paths corresponding to these clusters,
using the same colors. These are clearly two quite di�erent types of motions
present in the data.

Figure 1.9: Analysis of the Juggling Data. Far left panel shows the input
acceleration curves. Center left is the Principal Nested Spheres scatterplot,
revealing two distinct clusters, highlighted by brushing. right panels verify
these clusters represent two di�erent types of cycles.

1.3 Shapes as Data Objects

A particularly deep and important example of shapes as data objects is the
bladder-prostate-rectum data, studied in a series of papers including Chaney et
al [37], Broadhurst et al [31], Davis et al [52], Pizer et al [174, 175, 171, 172], Lu
et al [132], Stough et al [204], Jeong et al [113], Merck et al [154] and Feng et
al [68]. Those analyses were motivated by the challenge of planning radiation
treatment of prostate cancer. That treatment is quite e�ective, but administered
over the course of a number of days. The goal is to provide a maximal radiation
dose to the prostate while minimizing the impact on nearby sensitive organs such
as the attached bladder and the rectum which is adjacent. A major radiation
treatment planning challenge is that the locations of all 3 organs vary widely
on the time scale of days. Computed Tomography (CT) images are useful for
visually locating these organs on a given day, but segmentation, i.e. �nding
the set of voxels inside each organ, was a challenging problem because of poor
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contrast and noise, as shown in Figure 1.10. That is one slice of a 3-d stack
of images, showing a side view of the hip region for one patient. The color
scheme of CT is the same as for x-rays, so dense objects such as bones show
up as white. Thus the upper right of Figure 1.10 shows the tailbone, and a
hipbone passes through this slice in the lower center. Black indicates the least
dense regions which are gas bubbles in the rectum, which is the curved lighter
region containing the darkest spots starting near the top center and curving
down below and to the left of the tail bone. The lighter gray region between the
top of the rectum and the small hip bone is the bladder. The prostate, which
is the target of the treatment, is a light gray region between the hip bone, the
bladder and the lowest visible section of the rectum.

Figure 1.10: One slice of 3-d CT image in bladder-prostate-rectum data. Bones
are white, black gas bubbles indicate the rectum. Bladder and prostate are light
gray near the center and lower center. Shows that automatic segmentation is
very challenging.

Segmentation of the prostate is quite challenging because of very poor con-
trast with surrounding objects (it is essentially the same shade of gray and
has both lighter and darker regions nearby) and because of the relatively high
noise level. For these reasons, incorporation of anatomical knowledge is essen-
tial to the segmentation process. Manual segmentation achieves this through
an anatomically trained technician drawing the boundary of an object on each
slice of the 3-d image. The union of the interior voxels, aggregated over slices
then gives a segmentation of the object. An example of that process is in Figure
1.11, which shows two views of a manual segmentation of the bladder in Figure
1.10. The left panel shows how voxels are aggregated across slices, using a view
orthogonal to that where the drawing was done. The right panel is a rotated
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view of the highlighted collection of blue colored voxels without the CT image,
giving a clear impression of the 3-d object.

Figure 1.11: Left panel shows the results of a manual segmentation of the blad-
der, performed on an orthogonal slice. Right panel shows a rotated view of the
same bladder, to highlight the 3-d aspect.

While manual segmentation is quite e�ective at locating these organs for
planning radiation treatment, it is time consuming (thus expensive for use in a
clinical setting) and hence it is not practical to repeat this operation many times
over the course of radiation treatment. This has motivated a lot of research on
automatic segmentation of these organs, much of which was developed in the
references cited at the beginning of this section. The key idea is to incorporate
anatomical information into the training process, using a Bayesian statistical
model. The starting point for this is a shape representation, i.e. a parametric
model for each organ. In some contexts shape is conveniently represented by
landmarks, i.e. a set of points that correspond across members of the data set,
which can be readily found on each. See Dryden and Mardia [61] for intro-
duction to the large literature on statistical analysis of landmark based shape
data. Using the coordinates of the landmarks as data objects would not cor-
rectly model shape because they also include irrelevant aspects such as location,
rotation and scaling. Thus shape analysis focuses on data objects where these
nuisance aspects have been mathematically removed. There is an interesting
parallel here to the idea from Section 1.2 that depending on the context either
phase or amplitude data objects could be of primary interest or either could
merely represent nuisance variation. In particular, the study of plate tecton-
ics and continental drift is also based on landmark data, as studied in Chang
[38] and Royer and Chang [181]. However, an opposite choice of data objects
is made, where shape variation is the nuisance, and translations and rotations
now become the focus of the analysis.

While landmark approaches are useful for many tasks, they are typically
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less useful in many medical imaging situations, such as soft tissues, where corre-
sponding (across cases) landmarks can be hard to �nd, with often very few obvi-
ous choices apparent. Hence, there has been much research devoted to boundary
representations. In the computer graphics world a very common boundary rep-
resentation is a triangular mesh, see e.g. [161]. A major challenge to the use
of mesh representations in shape statistics is correspondence, i. e. relating
the mesh parameters across instances of shape data objects. Two important
approaches to this are Active Shape Models, see Cootes et al [44] for good in-
troduction, and the entropy based ideas of Cates et al [36]. Another major
formulation of boundary representations is through Fourier methods, e.g. as in
Keleman et al [118]. For su�ciently smooth shapes, Kurtek et al [125] have
shown that superior representation comes from enhancing boundary represen-
tations by also including surface normal vectors.

As discussed in Siddiqi and Pizer [195], a medial representation can provide
improvements for a number of imaging tasks. The key idea is to base the repre-
sentation on the more robust concept of 3-d solids, instead of on 2-d boundary
surfaces. For the reasons discussed in Chapter 3 of Siddiqi and Pizer [195], the
concept of medial locus has been generalized to give skeletal representations. As
noted in Pizer et al [176] the enhanced �exibility of skeletal representations al-
lows for superior �ts to data. A skeletal representation of one bladder, prostate
and rectum instance is illustrated in Figure 1.12.

Figure 1.12: Skeletal representation of a single bladder-prostate-rectum. Left
panel shows the central skeletal sheets, atoms and spokes for each shape object.
Center panel adds the implied boundaries as quad meshes, using yellow for the
bladder, green for the prostate, red for the rectum. Right panel represents the
implied boundaries using a light source rendering.

The left panel of Figure 1.12 shows the interior components of three skele-
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tal representations, one for each organ. Each has a set of yellow dots, called
skeletal atoms, connected by green line segments, which are a discretization of
the skeletal sheet, the 2-d surface which is approximately medial in the sense of
being equidistant from both boundaries. Each skeletal atom has spokes, shown
as cyan and magenta line segments, extending from the skeletal sheet to the
boundary of the organ. skeletal atoms at the edge of the sheet each have one
additional spoke shown in red, extending to the edge of the organ. The central
panel of Figure 1.12 adds three colored meshes (yellow for the bladder, green
for the prostate, red for the rectum) which indicate the boundary of each that
is implied by the interior components as a quadrilateral mesh that connects the
ends of the spokes. The right panel shows the boundary more explicitly by col-
oring the panels of the quad meshes and using a light source shading in the same
colors. The skeletal model is a parametric model of shape, whose parameters
are the 3-d locations of the yellow atoms, the lengths of the spokes, and the
angles of the spokes, each of which is represented as a point on the sphere S2.

For CT images where a manual segmentation has been performed, the skele-
tal shape model can be �t to the binary image shown in blue in Figure 1.11 (i.e.
the various parameters estimated), using direct methods such as least squares.
However, for clinical applications such as radiation treatment planning, with
a need for a technician to perform this operation several tens of times for one
course of treatment, manual segmentation is prohibitively expensive. This mo-
tivated the work cited at the beginning of this section, on automating �tting of
skeletal models, as shown in Figure 1.12 directly to raw CT images as shown in
Figure 1.10. As discussed above, this requires incorporation of something akin
to anatomical information. That is done using a Bayesian statistical approach.
Essentially some manual segmentations are used to train a prior distribution,
which is combined with a likelihood based on a new CT image, to generate a
posterior distribution which is maximized over the parameters of the skeletal
shape representation, to give an automatic segmentation.

The Bayes implementation employed in this type of application di�ers some-
what from most modern Bayes applications. On one hand, it is relatively simple
since it essentially only uses conjugate Gaussian priors, likelihood and hence pos-
teriors. This is a strong contrast with the complicated models involving Monte
Carlo Markov Chain methods that are currently very prevalent in applications
of Bayes methods. On the other hand, this Bayes application is more compli-
cated than many in two ways. First the number of parameters to �t is typically
much higher then the number of training instances. The second complication is
the non-Euclidean nature of the parametrization, caused mostly by each spoke
naturally lying on the surface of the sphere S2. The high dimensionality has
been handled by a variety of methods related to Principal Component Analysis
(PCA). More challenging is that skeletal parametrized data objects are natu-
rally elements of a space of the form Rk × Rl+ × (S2)m. Such spaces are called
manifolds in di�erential geometry and are usefully thought of as curved surfaces
(e.g. the surface of the sphere). As discussed in Chapter 7, data naturally lying
on a manifold present special challenges to statistical analysis. This includes
also the statistical area of directional data, Mardia [137], where the data objects
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are angles (e.g. wind or magnetic �eld directions). Angles are usefully viewed
as lying on the unit circle so such data objects are also called circular data, as
in Fisher [73], and spherical data, see Fisher [74]. A good overview of statistical
analysis of data on more general manifolds can be found in Patrangenaru and
Ellingson [165].

The bladder-prostate-rectum segmentation challenge described above has led
to a series of developments in terms of analogs of PCA for data lying on the
manifolds of skeletal representations. The Principal Geodesic Analysis (PGA)
of Fletcher et al [76] represents an important early landmark in this work. The
main idea of PGA is to consider the Euclidean PCA basis as a set of orthogonal
lines that (sequentially) best �t the data. In PGA these best �tting lines are
replaced by best �tting geodesics (e.g. great circles on S2) which are a natural
analog of lines. The results of a PGA, based upon n = 17 skeletal representations
(collected over a sequence of days) from a single patient are shown in Figure
1.13.
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Figure 1.13: Principal geodesic analysis. Modes of variation. Columns give
visual impression of �rst 3 PGA components. All three plots in the second row
are the Fréchet mean. Top row shows three +2 standard deviation departures
from the mean, and bottom row shows the corresponding -2 standard deviation
departures. Shows three interpretable and sensible modes of variation.

Figure 1.13 reveals interesting modes of variation of these organs within this
person. The left column (�rst mode of variation) seems to re�ect variation driven
by the rectum. The second mode (middle column) shows twisting, while the
third (right column) is about emptying and �lling of the bladder. This input led
to the Bayes segmentation method giving very e�ective automatic segmentation.
This was the basis for the successful start-up company Morphormics, which was
subsequently purchased by the radiation treatment equipment manufacturer
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Accuray.
More recently there have been a series of improvements to PGA, motivated

by a succession of deeper and deeper integrations of statistical ideas with the
di�erential geometry. Detailed discussion of this progression appears in Chapter
7.

While this discussion has focused mostly on segmentation using skeletal
shape representations, much important related work has been done on classi�-
cation as discussed in Chapter 10 and on con�rmatory analysis which appears
here in Chapter 12. Good overview of the usefulness of skeletal representations,
especially in comparison to other types of representations can be found in Pizer
[176, 173], Schulz [190] and Hong [103].

1.4 Tree Structured Data Objects

A much di�erent example of OODA is trees, in the sense of graph theory, as data
objects. An interesting data set, where each data object is essentially the set
of arteries in one person's brain, was collected by Bullitt and Aylward [33] and
Aylward and Bullitt [13]. While a long term goal is to study pathologies, such
as stroke tendency or brain cancer, such cases were deliberately screened out of
this data set, to focus on normal variation within the population. Interesting
quantities that are useful for various comparisons below are age and gender.

These data objects, for a collection of about 100 people, were collected using
a mode of Magnetic Resonance Imaging called Magnetic Resonance Angiography
(MRA). This mode �ags motion as white, so the �ow of blood through the
arteries shows up very well. This is seen in Figure 1.14 as the white spots,
where the di�erent panels show adjacent horizontal slices of the 3-d image.

Figure 1.14: Three adjacent slices an MRA image for a single subject. Arteries
show up as white dots and curves.

A major contribution of Aylward and Bullitt [13] was the development of a
tube tracking algorithm which was used to generate reconstruction of a given
artery tree. At this point the data object is the union of many spheres, whose
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centers follow the central curve of each arterial branch, and whose radii are the
branch radius at that point. This tree representation, from the MRA shown in
Figure 1.14 can be seen in Figure 1.15. The three panels show di�erent rotations
of the same set of arteries. The left and right panels are small rotations, with
the closest vessels moved to the left and right respectively.

Figure 1.15: Three views of the arterial tree for the subject in Figure 1.14,
showing the 3-d structure through somewhat di�erent rotations.

Such data object representations have been computed for approximately
100 people (the original study was a little larger, but some were deleted due to
MRA acquisition problems), for example three more of these, for three di�erent
subjects are shown in Figure 1.16.

Figure 1.16: Artery tree data objects for three additional subjects.

Data objects of this type present major challenges to doing statistical anal-
ysis. For example, it is really not clear how to de�ne even the sample mean of
such a set of objects. Understanding variation about the mean, e.g. as done by
PCA in Section 1.1, is a further challenge. Some approaches to this that have
appeared in the literature are discussed in the rest of this section.

The �rst versions of PCA like visualizations of these data objects are called
combinatorial, because they only took into account the branch linkage infor-
mation, ignoring other aspects such as branch length, thickness, location and
physical location. These analyses are in Wang and Marron [223] and Aydin
et al [11]. These early analyses involved embedding the trees which naturally
lie in a three dimensional ambient space, into a binary two dimensional data
object representation, as shown in Figure 1.17. Two arbitrary choices of branch
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location involving either branch thickness or number of descendant branches,
were considered and gave di�erent results.

Figure 1.17: Examples of 2-d Embeddings as data objects, for 3 di�erent sub-
jects.

Two challenges with early versions of the brain artery tree data were the
linking of tree branches into a tree structure and the starting point of each tree.
These issues have been addressed through careful data objects choices. Linking
was initially done in Aylward and Bullitt [13] using a thresholding operation
combined with manual intervention, and the starting point was arbitrarily cho-
sen by the MR operator. In subsequent analyses, arteries were more accurately
linked using a visualization device invented in Aydin et al [12]. Also the start-
ing point issue has been addressed by only including arteries �owing out of the
Circle of Willis (a readily identi�able anatomical feature).

Wang et al [224] deeply investigate the relationship between age and artery
tree structure and �nd some unexpected behavior, by inventing an analog of
kernel smoothing with a tree structured response variable. More detailed dis-
cussion can be found in Chapter 9. See Alfaro et al [4] for another combinatorial
approach to PCA of the Brain Artery Data.

A quite di�erent choice of data objects was made in Shen et al [193]. The
key idea there was to use the Dyck Path idea of Harris [95] (invented as a tool
in the stochastic processes literature for the analysis of branching processes) to
represent each data tree as a curve, followed by the use of FDA techniques for
the resulting statistical analysis. Several variations were studied. While the
above papers were limited to exploratory analyses, Shen et al [193] went on to
do con�rmatory analyses, which found statistically signi�cant correlations with
age, although this is not surprising as this connection was also found in the
simple summary based analysis of Bullitt et al [34]. However, a deeper analysis,
based on tree pruning ideas found the �rst statistically signi�cant connection of
gender with tree structure, see Chapter 9.

Another approach to this data, based on phylogenetic tree representations
as data objects, can be found in Skwerer et al [199]. The motivation of that
approach was that since phylogenetic trees have been studied for a very long
time, in particular going back to Darwin [50] with interesting early graphical
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representations already in Haeckl [91], much is known about them which should
be useful for the study of trees as data objects. The main challenge is that
in a typical phylogenetic setting, one works with a common set of species (i.e.
leaf set), and the goal is to explore (often to choose between) various ways in
which the species could be reasonably organized into an ancestral tree. The
main challenge to adapting this idea to the case of the brain artery trees is
that the latter do not have a common leaf set. Instead arteries are collected
only until they become too thin to show up reliably in the MRA (about 1 mm
resolution), so that each person has a di�erent number of arterial endpoints,
none of which correspond across individuals in a meaningful way. To create a
common set of landmarks and thus create a set of data objects appropriate for
a phylogenetic type of analysis, common leaves were arti�cially generated as a
set of corresponding landmarks, based upon the brain cortical surfaces of each
person (also collected in the original study), using an elegant algorithm of Oguz
et al [160]. See Nye [159] for an early approach to PCA of phylogenetic tree
data objects.

A topological data analysis of the brain artery has been done by Bendich
et al [18]. That paper uses various persistent homology representations as data
objects. In con�rmatory analysis, these coordinate free representations have
given the strongest statistical signi�cance found to date for both age and gender.
All of above methods, together with illustrative graphics are discussed in detail
in Chapter 9.

Other approaches to data sets of tree structured objects include the tree
kernel idea discussed in Vert [221] and Yamanishi et al [234]. A mathematically
compelling approach to statistical analysis of tree structured data objects, which
has not yet been applied to the brain artery data, based on equivalence class
ideas can be found in a series of papers including Feragen et al [70], [71] and [5].

1.5 Sounds as Data Objects

Another example of OODA is sounds as data objects, which have been studied
in a particularly deep way in a series of papers analyzing human speech based
on digital recordings. Hadjipantelis et al [90, 89] investigated Mandarin Chi-
nese using a mixed e�ect model to develop relations between dialects which were
consistent with linguistic ideas. Coleman et al [?] used these methods to extrap-
olate back in time to estimate how archaic languages may have sounded. Pigoli
et al [170] analyze the relationships between modern romance languages, yield-
ing insights well beyond those available from classical textual linguistic analysis
as well as a transformation that provides an estimated reconstruction of how a
given speaker would sound speaking a di�erent language. Tavakoli et al [206]
combined these analyses with spatial smoothing to produce a dialectic map of
the United Kingdom. Shiers et al [194] develop a sound based evolutionary tree
for romance languages and dialects.

A typical �rst step in those analyses is to decompose the raw digital recording
of the sound into a spectrogram, which is a moving window version of the Fourier
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transform, giving a frequency representation in time, as shown in Figure 1.18,
from the study of Pigoli et al [170], kindly provided by Davide Pigoli. The top
panel is the raw recording of one person saying the word �deux� (two) in French.

Figure 1.18: Summarization of raw recording of a human speech sound of �deux�
in French, top panel, into a corresponding spectrogram which summarizes time
and frequency information with color coding height, shown in the bottom panel.

Frequently, the focus is on human speech from the viewpoint that aspects
such as pitch and timing are nuisances to be removed from the analysis. For
that choice of data objects, those e�ects are removed by reducing the spectro-
gram to appropriately de�ned time and frequency covariance matrices, and also
mean vectors sometimes play an important role. Color heatmap representation
summaries of �ve covariance matrices (with entries colored according to the bars
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on the right, all using the same scale to facilitate comparison) from Pigoli et
al [170] are shown in Figure 1.19, also from Davide Pigoli. For each language
these summaries are based on aggregating sounds for the spoken digits (1-10).
An exploratory visual comparison of these suggest some similarities (e.g. Amer-
ican and Castilian Spanish) and also some stark contrasts such as Portuguese
from the others. Con�rmatory analysis of these points and a number of others
using permutation testing methods can be found in Pigoli et al [170].

Figure 1.19: Covariance representation summaries of speech sounds from �ve
di�erent languages/dialects. Note strong di�erences between them, with poten-
tially interesting historical and geographical connections.

In the overall area of sounds as data objects, there is another interesting



CHAPTER 1. WHAT IS OODA? 30

parallel to the phenomenon noted in Section 1.2, that depending on the context
either phase or amplitude data objects could be the major focus of the analysis
with the other considered to be nuisance variation. In particular, the above
work focuses on a particular type of analysis of sounds as data objects, where
the goal is to study human speech, by a variety of speakers. As the human
brain does when parsing speech, they deliberately chose data objects which
focus on aspects of the sound that are about meaning of the words, which
means generally treating issues such as pitch, volume and timing as nuisances,
to be mathematically ignored. This a strong contrast with the area of Music
Data Analysis, which has been deeply studied in Weihs et al [227] where timing,
volume and pitch are actually of keen interest as the data objects.

Statistical analysis of covariance matrices as data objects are particularly
challenging. Simple approaches, such as rasterizing the entries of the matrix
into a vector and applying conventional Euclidean methods, such as PCA tend
to fail, because such analyses typically leave the space of non-negative de�nite
matrices. This issue is generally dealt with by treating the space of covariances
as a curved manifold. There are several such manifold representations that
are commonly used and may be well distinguished by the metric. The log -
Euclidean metric was popularized by Arsigny et al [9]. Fletcher and Joshi [75]
point out bene�ts of a Riemannian metric approach. Dryden et al [59] provide
an interesting comparison of di�erent metrics with particular insight coming
from studying geodesic paths under each metric and advocate the Procustes
metric.

Important work on the statistical analysis of covariance matrices as data
objects can be found in Dryden et al [60], Pigoli et al [168, 169] and Aston et al
[10]. A large and important application area that uses covariance matrices as
data objects in a fundamental way is Di�usion Tensor Imaging, started by Basser
et al [15]. Analysis of such data, using local polynomial smoothing methods can
be found in Yuan et al [238], and a varying coe�cient model approach is given
in Yuan et al [239].

The above works demonstrate that it has been very useful to understand
covariance matrices as data objects lying on a curved manifold. However, an
even more appropriate mathematical context is a manifold strati�ed space. This
is a connected set of manifolds of di�erent dimensions. Manifold strati�ed spaces
are appropriate for covariance metrics of varying rank. For each given rank
r, the natural data space is a manifold whose dimension is r (r + 1) /2. These
manifolds are naturally connected across rank through limiting operations where
eigenvalues tend to 0.

1.6 Images as Data Objects

The �eld of image analysis is very large. Statistics has traditionally appeared
there in several ways. Early work, with famous papers including Geman and
Geman [82] and Besag [21], tended to focus on aspects of mostly a single image,
with tasks such as denoising, segmentation and registration being predominant.



CHAPTER 1. WHAT IS OODA? 31

However, those �elds are now relatively mature, so a currently more important
role for statistical ideas comes at the population level which yields a very rich
source of potential data objects. For example, the shapes studied in Section 1.3
and the trees featured in Section 1.4 are two types of data objects extracted
from images.

But in other situations the images themselves can be treated as data objects.
An example of this is shown in Figure 1.20, which shows part of a data set of
n = 108 images (actually 248 × 186 gray level photographs) of students from
the University of Carlos III in Madrid, kindly provided by Monica Benito and
Daniel Peña. Note that there is quite a lot of variation among the faces, yet the
human perceptual system clearly indicates that the top row consists of female
students, with males on the bottom row.

Figure 1.20: Part of the registered student faces image data, females in the top
row, males on the bottom.

In an as yet unpublished paper by Benito, García-Portugués, Marron and
Peña, male vs. female classi�cation of these data is carefully studied. As dis-
cussed in Section 4.4, manual a�ne registration was used to put each face into
a common location in its image. Then the gray level pixels of the images were
rasterized into a single long vector, and various classi�cation methods were used
to try to understand the di�erence between males and females. Classi�cation,
also sometimes called discrimination, is an important OODA topic discussed in
Section 10. The classi�cation methods used on this face data set were linear
methods, as those yield the best interpretation of the results.

Particularly good results came fromDistance Weighted Discrimination (DWD),
proposed by Marron et al [142], as shown in Figure 1.21. DWD is discussed in
more detail and compared with other classi�cation methods in Chapter 10. The
right panel of Figure 1.21 shows the DWD scores, i.e. the projections of the
data onto the DWD separation direction (the normal vector to the DWD sep-
arating hyperplane) using a format similar to that of the right panel of Figure
1.4. The red plus signs correspond to the females and the blue circles are the
males, which are completely separable using DWD. Also shown are three kernel
density estimates, the �rst for the full population appears in black. Female and
Male sub-densities (i. e. rescaled according to sub-sample size) are shown as
and red and blue respectively. Top panel gives insight into what DWD is doing
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with the images, by showing a representative set of 8 reconstructions (i.e. the
vectors are converted back into an image) from 8 equally spaced points (loca-
tions shown as the 8 equally spaced black bars in the bottom panel) along the
DWD separating vector.

Figure 1.21: Results of DWD discrimination between males and females. Bot-
tom panel shows distribution of DWD scores. Top panel contains 8 reconstruc-
tions of faces, corresponding to the 8 points along the DWD separating vector
shown as vertical bars in the bottom. Shows clear insight as to how DWD
separates males from females.

The array of faces in the top panel is quite compelling. They look clearly
very female on the left side, quite androgynous in the middle, and clearly male
on the right. Also apparent in perhaps the second and third panel is the idea
from Langlois and Roggman [126] that average faces tend to be more beautiful.
In addition, note that farther to the right corresponds to stronger masculinity.



Chapter 2

Overview of OODA

This chapter discusses basic aspects of OODA. It also provides an overview of
methods discussed in more detail in later chapters.

2.1 Data Object Selection

Any OODA starts with data object selection. This typically has two main
components, determination of data objects, and their representation. Deter-
mination involves choice of focus of the analysis, for example in the mortality
data of Section 1.1 choosing between age indexed curves over years and year
indexed curves over age, and choosing whether to focus on amplitude and / or
phase variation in Section 1.2. Representation is more about how data objects
should be handled in the analysis, for example studying log probabilities or not
in the mortality analysis in Section 1.1, and choosing among the various shape
representations discussed in Section 1.3 and tree representations of Section 1.4.

Frequently a data matrix is a useful framework for organizing data analytic
thoughts. One of the matrix dimensions typically represents the cases, i.e. the
elements of a statistical sample, which are also sometimes called observations
or individuals. Some potentially confusing cross-cultural terminology has arisen
in bio-informatics, where a complex biological experiment is used to collect each
measurement, i.e. data vector, which itself is sometimes even called a sample.
The other matrix dimension is used to index features or numerical descriptors
of each data object, with variables being a common synonym.

An important issue is that there is a distinct dichotomy in personal pref-
erence as to which data matrix dimension is which. From the classical linear

Number Synonyms

Cases n elements of a statistical sample, observations, individuals, biological samples
Features d descriptors, variables

Table 2.1: Commonly used synonyms for cases and features.

33
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algebraic point of view, where vectors are columns, it makes the most sense to
treat each data object as a column vector, and then to horizontally concate-
nate these (i.e. bind the columns), resulting in columns as data objects, with
rows representing numerical descriptors. However, from the equally classical
statistical tabulation viewpoint, it is perhaps more natural to put variables (i.e.
features) in the columns and to hence use row vectors as the data objects.

Keeping this distinction in mind is critical to having meaningful technical
conversations. OODA terminology makes this straightforward, by �rst agreeing
whether it will be rows or columns that are the data objects. This choice is
often closely connected with software preference. Much mainstream statistical
analysis is done using R and SAS, where rows as data objects are the convention.
More mathematically oriented work is often done in Matlab where columns as
data objects is the more natural choice. Columns as data objects is typical in
bio-informatics as well, although this convention appears to be largely driven by
the fact that typical data sets tend to have many more features than cases, which
were easiest to store in early versions of Excel in that format. The convention
here is columns as data objects.

Another point of varying conventions is the letters used to denote the di-
mensions of the data matrix. Again this is context dependent, with choices like
m and n appearing in some areas. Statisticians generally agree that n should
be used for sample size, i. e. for the number of data objects. Quite common
also is p for the number of variables or features. Less clear is what p might
stand for. Some say it stands for predictors, but this seems limited to mostly
regression contexts. Others suggest parameters, which makes sense in contexts
where the mean is the focus, but not for consideration of covariance matrices
(which typically involve many more than p parameters). The convention here
is d standing for dimension of the data object vector.

As noted in Marron and Alonso [145], a useful framework for understanding
relationships between data objects is through the twin concepts of object and
descriptor spaces. The object space contains the raw curves, images, shapes
or trees, while the descriptor space (using terminology coined in Telschow et al
[208]) contains some sort of numerical representation, often in vector form.

Example 2.1.1: These spaces are illustrated using the simple FDA example
shown in Figure 2.1. The data objects are the n = 24 very simple func-
tions shown as black piecewise lines in the left panel of Figure 2.1. This
functional form is used here because it is two dimensional, in the sense
that each data curve is entirely determined by heights of the two x sym-
bols plotted on the vertical lines. Each curve has the constant values of
x1 on [0,1] and x2 on [2,3], and is piecewise linear between the x symbols
(on [1,2]).
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� Orthogonal Polynomials. There are many such orthogonal bases for curve
space. Many useful facts can be found in the classical book Szego [205].
A very useful, and easily accessible summary, of many important aspects
can be found in Gradshteyn and Ryzhik [87].

� B-splines. There are many variations of these typically smooth curves,
which provide �exible and e�ective representations of smooth data objects.
See Eilers and Marx [64], Stone et al [203] and Ruppert et al [183] for
good overviews of statistical aspects of this area. An important classical
B-spline reference is de Boor [53].

� Wavelets. This orthonormal basis can give e�cient data object representa-
tion for curves with varying amounts of smoothness in di�erent locations.
See the book Frazier [78] for introduction to this area. Other important
references include Mallat [136], Daubechies [51], Donoho and Johnstone
[57] and Donoho et al [58]. Di�erent types of useful insights come from
exact risk calculation in Marron et al [149], and using spectral ideas in
Marron [147].

The Object - Descriptor space concept is also useful for these curve representa-
tions, where again the object space consists of curves, but now the descriptor
space is the space of basis coe�cients. Data analysis methods such as PCA still
tend to work quite well performed on the vectors of basis coe�cients in that de-
scriptor space, together with insightful visualization of modes of variation seen
in the object space, in the spirit illustrated in Figures 2.1 - 2.4. A particularly
deep example of this type can be found in Locantore et al [130]. ??? Perhaps
add an example later? ???

Another very important aspect of data object representation is transforma-
tion. The utility of this was illustrated in Figure 1.1, where it was seen that
log10 mortality gave much clearer insights than were available from the raw
mortality. Data transformation is further studied in Chapter 4.

Sangalli et al [185] gave an interesting discussion of the importance of su�-
ciency in data object choice. A related issue, very important to mathematical
statistical analysis of OODA is the data object environment. For example, in
FDA, there are many ways to measure distance between curves, e.g. there is
the whole family of Lp norms. Much of the literature has been dominated by
the choice p = 2 because of its close relationship with classical least squares,
and its tractability. However, when robustness issues are important p = 1 can
be very useful, and Devroye and Gyor� [55] o�er good reasons why L1 is more
natural in the case of probability densities as data objects. In some cases, such
as the occasional need to strongly penalize thin spike departures, the choice
p = ∞ can be more useful. In other situations performance of derivatives are
critical, so Sobolev type norms are the most sensible choice. However, these
OODA environment issues run deeper than just the mathematical statistics. In
particular, as seen in Chapter 5, even simple data analytis notions such as pop-
ulation center can depend criticially on such choices. Piercesare Secchi nicely
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summarized this set of ideas as: �Experimental units only become data objects
after embedding in an appropriate space�.

There are situations where explicit representation of data objects can be side
stepped. An example is when only distances between data objects are measured.
There are many methods for handling such situations, discussed in Chapter 5.

2.2 Data Visualization

Data visualization, as illustrated for example in Figures 1.1-1.6 is a very im-
portant part of exploratory data analysis. A personal opinion is that it should
represent a larger part of statistical training, and of funded research, than it cur-
rently does. This seems to be due to statistical models and goals (for example
analyzing causality) becoming increasingly complex, which leads to a tendency
to co-opt a large share of attention in the �eld. However visualization is not only
important for exploratory analysis and understanding how data objects relate
to each other as demonstrated in Figures 1.1-1.6, it is frequently also important
to e�ective choice of data object, and further also provides important reality
checks.

Important references on data visualization include Tufte [215], Cleveland
[43, 42] and Tukey [218]. These works contain many useful ideas and discus-
sion of what comprises good graphics, although they can sometimes be overly
prescriptive. The rest of this section considers two speci�c types of data visual-
ization that are critical to OODA.

2.2.1 Visualization of Marginals

A perhaps too often ignored, but frequently critical, step in OODA is the study
of marginal distributions. Visualizations of marginal distributions, e.g. by his-
tograms or QQ plots, are common when there is time for careful analysis of clas-
sical small scale data sets. This often proves very useful in handling variables
with strong natural skewness, indicating a potential need for transformation
(see Section 4.3 for much more on this), and also in the case of strong outliers,
which depending on the context can either be deleted or handled through the
use of robust methods (see Chapter 15).

A reason that this step seems challenging in high dimensional contexts is
that there are generally just too many variables (i.e. features) to humanly
comprehend the structure of all of them. A careful analyst will try to look at
some representatives, but it may not be obvious how to choose those. This
problem is addressed using the graphical device of marginal distribution plots
in Section 4.1.

Example 2.2.1.1: An example of a marginal distribution plot is shown in
Figure 2.5, for the Spanish male mortality data studied in Section 1.1. This is
based on the same data matrix that was used in the left panel of Figure 1.1.
Recall that the columns of that matrix (the data objects studied there) were
indexed by years. The rows of that matrix are viewed as variables, i.e. features,
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and correspond to ages. The upper left panel in the marginal distribution plot
shows the mean mortality of ages, sorted into increasing order. Note that the
�rst half of these averages all appear to be quite small, with much larger values
appearing among the second half. This is consistent with the visual impression
from the left half of Figure 1.1 that around half of the ages have mortality orders
of magnitude smaller than the rest. This set of sorted means is also the key to
�nding a representative set of variables (ages in this case) to actually visualize.
One notion of representative is to look at an equally spaced subset (among the
sorted mean ages), as indicated by the vertical dashed lines. The remaining
panels show the 8 marginal distributions of ages corresponding to those 8 lines,
using the same format as in the right panels of Figures 1.4 and 1.5 and in the
bottom panel of Figure 1.21. In particular, the circles correspond to the years
(i.e. the data objects, colored using the same year rainbow pattern from Figure
1.2) using mortality as the horizontal coordinate, with the vertical coordinate
(and color, red 1908 - magenta 2002) indicating order in the data set (thus the
year). The black curve is a smooth histogram, i.e. kernel density estimate, as
discussed in Chapter 14.

Note that the �rst two shown ages, 11 and 19, all have very small mortalities
on the order of 10−3. The ages in the middle row, 32, 40 and 59, have medium
mortalities on the order of 10−2. On the bottom row, all mortalities are larger.
An important issue is that data sets having variables with such diverse scales can
be problematic for many forms of statistical analysis. This motivates using one
of a number of approaches to data adjustment, discussed in detail in Chapter 4.
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highlight di�erent, and very insightful, notions of representative variables as
well. For example standard deviation can be a very useful measure of diverse
scaling among features. Skewness in distributions can become the focus of
such an analysis by sorting on sample skewness. A number of other choices
of distributional summaries, and a deep example illustrating their usefulness
in a real data context, is discussed in Section 4.1. These include the number
of unique numbers in a data set which can be very informative for discrete
distributions, and also the number of zeros.

One more issue is the number 8, of representative variables shown in Figures
2.5 and 2.6. This was chosen purely for graphical convenience, in the present
format. In other situations 15 = (4× 4)−1 allows simultaneous viewing of more
representatives. A much larger number results in each marginal distribution
being too small for easy viewing.

2.2.2 Visualization of Global Structure

This section is about graphical devices that give insights into how data objects
relate to each other, for understanding potential clusters and other types of rela-
tionships, together with interpretation via modes of variation. Several examples
are given to demonstrate such relationships.

Principal Components Analysis (PCA) is an e�ective and commonly used
tool for this purpose, as already illustrated in Section 1.1. Ramsay and Sil-
verman [177, 178] made it clear that it is a powerful tool for understanding
variation in FDA, i.e. curves as data object contexts. Less well known is that
this insightful idea was �rst published in Rao [180], in the context of analysis
of growth curves. Basics of PCA are described in Chapter 16. Main ideas dis-
cussed there are the facts that the good idea of PCA has been rediscovered (and
generally given di�erent names) a number of times, and that the misconception
that PCA is only useful for Gaussian data sets (because one motivation of it is
via Gaussian likelihood ideas) is seriously misleading. The latter point is also
clear from several of the examples given in this section.

Figure 2.7 shows an FDA toy example to illustrate the concept of decom-
position into modes of variation, in the spirit of Figure 2.4. The n = 50 input
raw data curves are shown in the top left panel. These are simulated to have an
approximately parabolic shape, but some variation of several types is included
as well. Each curve is really just a parallel coordinates plot (as discussed in
Section 2.1) of a collection of 10 dimensional vectors, but conceptually it makes
sense to think of a bundle of smooth curves.

The object space - descriptor space concept illustrated in Figures 2.1 - 2.3 is
useful here, except that explicit visualization of the descriptor space is not done
because that space is R10 for this data. None the less, it is still useful to think of
statistical analysis as being done in that space, while looking at the correspond-
ing objects space (i.e. curves) view, on the cloud of points that represents the
bundle of curves. Colors are based on the Matlab default rotating color palette,
with the same colors used in the other panels for visual correspondence.

The top center panel of Figure 2.7 shows a �rst natural statistical summary:
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the sample mean. Again, it is useful to view that curve as the object space
representation of the mean of the cloud of points in the descriptor space (R10).
The mean curve can also be considered as the point-wise mean of the curves in
the top left panel. The top right panel shows the mean residuals, which are a
visualization of the curves that correspond to shifting the point cloud so that
it is mean centered at the origin. This already highlights an interesting aspect
of the data: the parabolic shape of the curves is entirely a feature of the mean,
and not the variability about the mean.

The next three rows show the results of a PCA decomposition of variation,
of the same type shown in Figures 1.4 - 1.5 and 2.2 - 2.3.

The left plot in the second row, called the loadings plot above, shows the
�rst mode of variation. This is based on �nding the direction in the descriptor
space (R10) that maximizes the projected variation (in the sense illustrated in
Figure 2.2), projecting each mean residual curve onto that direction, and then
showing the resulting set of curves (as the projection coe�cient multiplied by
the direction vector). Note that this set of curves has rank one in the sense
that they are all multiples of the same curve (which is the curve representation
of the direction vector in the descriptor space). This clearly shows that the
�rst mode of variation is essentially a vertical shift. With this knowledge in
hand, that mode can clearly be seen also in the mean residuals on the top
right, as well as in the raw data on the left. The right panel in the second
row, shows the distribution of the projection coe�cients, i.e. the scores, again
with corresponding colors (e.g. the yellow followed by yellow and red on the
right correspond to the same colored curves on the bottom of the left hand
panel). The format of these scores distribution plots is the same as that used in
Figures 1.4, 1.5, 2.5 and 2.6, where each score is represented with a symbol, and
the black curve is a smooth histogram. Because there is no special ordering in
this data set, the height can be considered to be random, which results in the
jitter plot idea which was proposed by Tukey and Tukey [216] as a device for
visualizing one dimensional data sets. The center panel shows the corresponding
PC1 residual curves, each of which is just the centered residual minus its PC1
projection. Note that these are also the projections of the mean residuals onto
the hyperplane orthogonal to the PC1 direction.
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jection coe�cients) in the right panel show much less variation than for PC1,
and the PC2 residuals center panel also show relatively less variation.

The fourth row shows the PC3 loadings plot, i.e. third mode of variation.
The loadings plot in the left panel looks rather random. This is because the
data were simulated as

(x− 6)
2

+ 4Z1,j + 0.5Z2,j (x− 5) + Z3,j ,

for j = 1, · · · , 50, where x is taken to be equally spaced, and where the Zi,j are
independent standard Gaussian. Note the coe�cients are deliberately chosen to
make these components correctly ordered in PCs 1,2,3. Since the noise terms
Z3,j follow an isotropic Gaussian distribution, the PC3 direction is random.
The relatively small scale of the noise is also clear from the tightness of the PC3
scores shown in the right panel. Also the PC3 residuals in the center panel show
that PC3 explains relatively little of the variation in the PC2 residuals above,
again because the noise is isotropic, and thus evenly distributed among the
remaining directions in R10. Again these PC3 residuals are the PC2 residuals
above minus the PC3 projections to the left.

A useful viewpoint on these issues comes from various sums of squares (in the
spirit of Analysis of Variance). The fact that the PC1 projections explain most
of the variance is quanti�ed by the sum of squares of the PC1 projections (left,
2nd row) representing 86% of the sum of the mean residual sum of squares.
The visual impression that the PC2 projections (left, 3rd row) contain less
variation is clear from that some of squares being only 14%. The remaining
sum of squares (i.e. summed over all remaining PC components, which is also
the sum of the residuals shown center, 4th row) is only 3.6%, con�rming that
the remaining variation is quite small. The spherical nature of the remaining
variation is con�rmed by the PC3 variation explained being only 0.7%.

Figure 2.7 also provides an additive decomposition of variation as highlighted
in Figure 2.4. In particular, the raw data in the top left panel is the sum of the
mean in the top center, the components in the remaining left panels, plus the
residuals in the bottom center panel.

As discussed in detail in Chapter 16, the PC direction vectors used in the
above data decomposition are easily computed, using either an eigen-analysis
of the covariance matrix, or equivalently a singular value decomposition of the
mean residual matrix.

A graphical point worth discussion here is the axes used in Figure 2.7. In
particular (except for the �rst row) the vertical axes in the �rst two columns,
as well as the horizontal axes in the third column, are deliberately taken to be
the same (even across the rows). Such a view is quite nonstandard for most
graphics packages, which generally adhere to the goal of trying to use as much
of the graphics space as e�ciently as possible, in particular minimizing white
space. While the minimization of white space is generally a sensible default, in
this context it does have an intuitive cost as demonstrated in Figure 2.8, which
is a replotting of the bottom 3 rows of Figure 2.7, but this time using axes
that minimize white space. The di�erence between these two �gures is perhaps
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surprising. This is because it looks similar to the PC1 loadings just above. But
they cannot be similar since these direction vectors (recall each such plot consists
of multiples of a single vector) must be orthogonal. A careful look at the colors
reveals what is happening. Notice for PC1, the generally yellow color goes up
at the �rst arch and down at the second. Suggesting this function is roughly a
sine wave. In PC2 the mostly blue color goes upwards for both arches, while
the more red curves go downwards for each, which is a direction orthogonal
to the PC1 eigenvector. By the way, these colors have not been deliberately
assigned, but are just artifacts of the random generation of the curves, together
with over-plotting e�ects, where the color tends to be dominated by the last
plotted curves.

As suggested by the PC2 residual curves, the next components are pure
Gaussian noise, with PC directions looking quite random, which thus are not
shown here.

As noted in the survey paper by Febrero-Bande and Oviedo de la Fuente
[67], a number of FDA software packages aim to integrate PCA with noise
reduction in a single step. These include perhaps most notably the FDA package
accompanying Ramsay and Silverman [177, 178], and the PACE package started
by Yao et al [235]. While this process is critically important in many high noise
cases, as well as in the case of uneven and sparse sampling (of the horizontal
coordinates of the curves), in perhaps surprisingly many cases such as these
two examples, it can be enough to simply do naive PCA on the data. The
reason seems to be that often dominant directions of variation, especially those
representing interesting modes of variation, tend to lie in smooth directions. In
Gaydos et al [80] a variation of PCA, which maximizes smoothness instead of
variation, is proposed and integrated with PCA in an interesting way.

An important principal of multivariate analysis is that joint distributions
can contain much richer structure than is apparent from the marginals. This
concept can be used for a more clear understanding of the structure of the toy
data illustrated in Figure 2.9 by studying bivariate projections in addition to
the univariate scores distributions shown in the right hand column. Such a view
is the scatterplot matrix shown in Figure 2.10, which is in the same format as
shown in Figure 1.6. This view shows the distributions of the 1-d projections
(PC scores) along the diagonal, with in particular the �rst two being the same
as the lower two in the right column of Figure 2.9. The o� diagonal plots show
corresponding two dimensional plots. For example, the top center panel is the
scatterplot of the PC1 versus PC2 scores. Note this is closely linked with the
panel below (the horizontal axes are the same, so e.g. the left cluster in the PC2
scores is the same as the left cluster in the scatterplot), and with the plot to
the left (where the PC1 score axis becomes the vertical axis so the left cluster
in the PC1 scores is the bottom cluster in the scatterplot). This PC1 versus
PC2 scatterplot gives a clear view of the underlying structure in this case, there
are actually 4 clusters, which project down to 3 clusters in each of the PC1
and PC2 directions. Note that the center left plot is just the transpose of the
top center plot. Since this does not convey much new information, the below
diagonal plots are sometimes replaced by other graphics.
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issues, as illustrated in Figures 2.15 and 2.16. As seen in several examples above
PCA can be a powerful visualization device for �nding interesting structure in
data. But because PCA is driven by �nding directions of maximal variation,
it can lose e�ectiveness in situations where di�ering variables (i.e. features or
descriptors) have di�erent scalings. In particular, PCA will tend to be driven
by features with the most variation, while ignoring those with smaller scale
variation. This challenge can be particularly acute in situations where di�erent
descriptors even measure non-commensurate quantities, such as having di�erent
units. As noted in many classical texts, such as Mardia et al [138], Muirhead
[155], Jolli�e [115] and Anderson [8], this can be handled by pre-whitening, i.e.
standardizing by subtracting the mean and dividing by the standard deviation.
That operation followed by PCA is equivalent to replacing the usual covariaince
matrix with the correlation matrix in PCA.

A toy example that underlines this issue is shown in Figure 2.15, whose
format is quite similar to Figure 2.7. The n = 200 raw data curves in d = 100
dimensions appear in the upper left panel, using a rainbow color scheme. Note
that the �rst 20 features (as indexed on the horizontal axis) exhibit a much
higher amount of variation than the remaining 80. The mean in the top center
panel is essentially 0, so the mean residuals in the top right are nearly the same
as the raw data. The �rst PC mode of variation in the second row is clearly
driven by the �rst 20 features, and is a mode re�ecting all 20 features moving
up or down together. Similarly the second PC shown in the third row, has a
mode of variation which is a contrast between the �rst and second 10 features,
which is orthogonal to the PC1 mode, and of course re�ects less total variation.
The last row shows some remaining variation of much smaller scale.
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The same data set of curves as in Figure 2.15 is re-analyzed in Figure 2.16,
shown in the same format. This time the data are pre-whitened by standardizing
each variable, in particular each variable has had its sample mean subtracted
and been divided by its standard deviation. The similar variation of each feature
is immediately clear in the input data plot in the upper left. Unlike Figure 2.15
the last 80 variables are now more prominent. Very di�erent are the discovered
modes of variation, as now the �rst two modes focus mostly on structure in the
second 80 features, while the variation that dominated the analysis in Figure
2.15 now shows up only in PC3 and its residuals (which would thus show up in
PC4 had that been plotted). The reason that variables 21-100 now drive the
analysis is that the magnitude of the signal is now comparable with variables
1-20 and there are simply more of them, giving more overall variation (and they
are simulated to be independent, thus the variation goes in essentially orthogonal
directions). Quanti�cation of these ideas is given in Table 2.2, which contains
the percents of sum sum of squared of each component, with respect to the
residuals about the mean. Because the raw data curves in the upper left of
Figure 2.15 have almost all their variability on the left side of the range, it
is not surprising that part of the range drives two very large PC components
explaining almost all the variation in the data, as seen in the top row. The
bottom row show a more even spread of variation, which is consistent with the
visual impression of the standardized data in the top left of Figure 2.16. In
particular, this shows how now it is variation on the right part of the range
which has become dominant.
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It is worth considering which of the two very divergent analyses in Figures
2.15 and 2.16 is more appropriate. As noted above, most classical texts on
multivariate analysis will recommend doing the analysis based on the correlation
matrix (i.e. prewhitening as in Figure 2.16). This is often a sensible default,
especially in situations where di�erent variables are measured in di�erent units.
However it is important to realize that in other situations the original data
scaling may be most appropriate and thus should be preserved. For example,
in the Lung Cancer data in Figure 2.14 prewhitening by standardization will
result in the small exon starting at exonic nt number 500 playing too large a
role in the analysis. Clearly this is an important data object choice, deserving
careful consideration in data analysis.

PC 1 PC 2 PC 3 PC 4

Raw PCA 76% 24% 0.1% 0.03%
Standardized PCA 53% 27% 15% 5%

Table 2.2: Percent sum of squares explained by each PC component for the
above two examples. Shows why raw data components focus on structure on
the left, while standardization shifts the focus to the right.

More discussion of standardization, together with a real data example, ap-
pears in Section 4.2. Other examples studying the tendency of PCA to focus
on large scale variation can be found in Chapter 16.

While PCA is a workhorse visualization method, which has frequently found
interesting structure in data, one more thing to keep in mind is that because it
works through directions that maximize variation, there may be important types
of population structure that it might actually obscure. This point is illustrated
in the following �gures.

Figure 2.17 shows a PCA scatterplot view of another cancer data set, from
Hoadley et al [102]. This data set is based on expression of d = 12478 genes.
Studied here is a subset of n = 50 cases (this number gives clear visualization
of the main point about the limitations of PCA) from each of the cancer types
Bladder Cancer (magenta), Kidney Renal Cancer (blue), Ovarian Cancer (cyan),
Head and Neck Squanous Cell Cancer (green), Colon Adenoma Cancer (yellow)
and Breast Cancer (red). While each of the six cancer types can be cleary seen,
there is substantial overlap of the classes in this view. This is because the PCA
directions only maximize variance, and essentially ignore class labels.

Figure 2.18 shows an alternate scatterplot view of the same cancer gene
expression data shown in Figure 2.17. The symbols and colors are the same, but
instead of using PC directions for the axes, the directions used in the projections
are designed to deliberately separate pairs of cancer types. Each direction is
based on the DWD method used in Section 1.6 (and discussed in more detail
in Chapter 10), this time trained on pairs of cancer types. The projection
direction used in the �rst row and column is DWD trained on only the Kidney
(blue) versus the Head and Neck (gren) cancer types. The projections of the
full data set onto that direction (although DWD was trained on just those two)
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visualization directions giving much di�erent visual insights than those available
from PCA.

Another striking example of PCA providing not the best separation of cancer
classes can be found in Liu et al [129].

The methods and examples studied in this section provide a somewhat non-
standard way of thinking about high dimensional data. The currently fashion-
able notion in much of statistics is that when faced with high dimensional data,
one must use approaches such as sparsity, i.e. treating most variables as neg-
ligible, to reduce the data to a �manageable dimensionality�. While sparsity is
a useful approach in some cases and has been tackled e�ectively using a very
large range of methods starting with the LASSO approach of Tibshirani [209],
there seem to be many more OODA contexts where the fundamental sparsity
assumptions are far from being reasonably well satis�ed. These include almost
all of the examples discussed in Chapter 1, and also the rich genetic data dis-
cussed in Figures 2.11 - 2.14. Yet sparsity ideas seem to be currently both
over used and over studied in the statistics literature, perhaps because most
statisticians tend to think about high dimensional data in a too variable centric
way. The OODA viewpoint demonstrated in this section allows taking a more
object centric approach, where the primary focus is more usefully placed on the
data objects and the relationships between them, not the variables. Of course
variables are important, but they should be playing the role of descriptors (i.e.
representers) of the objects, as opposed to being the focus of the analysis.

2.3 Con�rmatory Analysis

The visualization methods discussed in Section 2.2 are very good at providing
useful insights and at �nding population level structure in data. However an
important aspect to keep in mind is that they also have the potential for �nding
useless artifacts of sampling variation.

This point is illustrated using simulated data in Figure 2.19. Here two classes
of data were generated in d = 1000 dimensions, with n1 = n2 = 50 data points
in each class. It is hard to see much di�erence between the red class (shown as
circles) and the blue class (shown as plus signs) in the PCA scatterplot view
shown in Figure 2.19. However, an important lesson from the Section 2.2 is
that for high dimensional data, PCA may not �nd all interesting aspects of the
overall distribution because it focuses only on variation in the data.
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it is also quite capable of �nding things which are just natural artifacts of the
sampling variation (which can appear in unexpected ways). For this reason it is
critical to combine any exploratory visual analysis with con�rmatory analysis,
as studied in Chapter 12.

In the more complicated areas of OODA, e.g. many of those illustrated in
Chapter 1, con�rmatory analysis is still in a relative state of infancy (compared
to other parts of statistics). One reason for this is that in some of those areas,
such as tree-structured or manifold data objects, it can be quite challenging
to develop appropriate null probability distributions, which underlie much of
classical statistical inference. This has motivated permutation and bootstrap
solutions, although careful investigation of their properties remains as a wide
open research area in mathematical statistics.

Existing con�rmatory analysis methods for OODA are discussed in Chapter
12.

Section 12.1 discusses a generally useful high dimensional permutation type
of test, called DiProPerm. The key steps are:

� Find a DIRection in the data space, such as the DWD direction used in
Figures 1.21, 2.18 and 2.20, although any other systematic direction can
used as well.

� PROject the data onto that direction to focus on representative univariate
components, e.g. the numbers whose distribution is shown in the top left
panel of Figure 2.20. Then summarize the projections with an appropriate
summary statistic. A natural choice might be the 2 sample t-statistic.
However a surprising result of the careful mathematical analysis of Wei et
al [226] is that in the simple di�erence of sample means provides a more
stable hypothesis test in high dimensions.

� PERMute the data to assess statistical signi�cance. In particular ran-
domly reassign the group labels (e.g. red and blue for the data in Figures
2.19 and 2.20), recompute the separating direction, the projections and
the summary statistic, to generate one element of a simulated null distri-
bution. Repetition generates a simulated null population and comparison
with the original summary statistic provides statistical inference such as
p-values.

In Section 12.1 it is seen that while it may not always be the most powerful
mean hypothesis test, the DiProPerm test is generally useful because it provides
direct con�rmation (or not) of visually observed e�ects, such as the di�erence
between the red and blue groups in Figure 2.20. Further examples exploring
these issues, together with real data examples highlighting the importance of
this type of con�rmatory analysis appear in Section 12.1.

While the DiProPerm test provides a very useful reality check for con�rming
visualized di�erences between previously de�ned groups, care must be taken in
the comparison of groups discovered say by clustering. The useful operation
of clustering can be done in an informal visual way, as for the RNAseq data
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in Figure 2.13. It can also be done in many more mathematically motivated
ways, as discussed in Chapter 11. It is seen in Section 12.2 that application of
DiProPerm in clustering contexts can be seriously misleading. Yet the method
of clustering has led to many important discoveries in data, so it will continue
to be an important tool. In parallel to the challenge of spurious visualization
illustrated in Figure 2.20, is the question of �which clusters are really there?�
as opposed to being spurious artifacts of the sampling variation. An answer to
this question, which becomes particularly challenging in the high dimensional
case is the SigClust approach motivated in Section 12.2. Comparison with other
approaches is given as well.

There is one more important point aspect of con�rmatory analysis in OODA.
This is that carefully working from the OODA viewpoint can yield much more
powerful and insightful analyses than are available from naive implementation
of classical methods. An example of this is the study of osteoarthritis and its
impact on knee shape done in An et al [6]. The shape data objects were rep-
resented by a set of 60 two-d landmarks, collected from standard x-ray images,
using Procrustes methods as discussed in Dryden and Mardia [61]. Earlier work
in this area, such as Gregory et al [88] and Nelson et al [158], used PCA to
summarize the population structure and then did 2 sample t-tests on the re-
sulting sets of scores. There are 2 ways in which OODA o�ers improvement in
this approach. First is the concept, illustrated in Figures 2.17 and 2.18, that
important information in terms of class di�erences may not show up strongly
in any chosen low rank PCA direction. The second is that the multiple testing
requires some type of adjustment, such as a Bonferroni correction or False Dis-
covery Rate calculation, which entails additional loss of power. This issue was
shown to be serious in the relatively small scale (n = 65) study of An et al [6],
where a DWD based OODA approach found a statistically signi�cant result,
when the PCA and t-test approach did not. See Nelson et al [157] for related
results.

2.4 Further Major Statistical Tasks

While data visualization, as illustrated in Section 2.2, and con�rmatory analysis
as discussed in Section 2.3 are important components of OODA, there are also
a number of important analytic methods that are used as well. These include:

� Distance based analysis. A number of OODA situations involve data ob-
jects which lie in spaces where statistical analysis can be challenging. A
straightforward general strategy is to �rst �nd a metric on the space and
then to compute the matrix of pairwise distances. Chapter 5 discusses
various methods for data analysis whose input is only a matrix of dis-
tances between data objects. Perhaps most important among these is an
analog of PCA called multidimensional scaling, Torgerson [211]. A crucial
issue in metric based analysis is choice of metric, which is essentially a
data object representation issue.
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� Statistics on manifolds. Chapter 7 discusses data objects lying in man-
ifolds, essentially smooth curved surfaces. Relatively simple examples of
data objects that are usefully thought of as lying on a manifold include
directional data, where angles (e.g. wind or magnetic �eld directions) are
the data objects, see Mardia [137] and Fisher [73]. More complicated man-
ifold data objects arise in the study of shape, for example the various type
of shape data objects representation discussed in Section 1.3. Statistical
analysis of data objects lying on a manifold remains a controversial topic,
as there are a number of ways to approach it, with no clear consensus on
issues even as to how population centers should be computed.

� Tree structured data objects. Even more challenging than manifold data
are data objects having a tree structure, in the sense of mathematical
graph theory. This area is studied in Chapter 9, motivated by a data set
where each data object is a representation of the arteries in a human brain.
As for manifold data, a number of di�erent analytic methods have been
proposed, and it is even less clear which approaches are most natural. A
perhaps exotic, but quite successful approach has been topological data
analysis, done in Bendich et al [18].

� Classi�cation (also sometimes called discrimination or pattern recogni-
tion). This is a large �eld and in fact has become a very important com-
ponent of the �eld called machine learning. A good overview is available
in Duda et al [62] and Hastie et al [97]. This area is reviewed brie�y in
Chapter 10.

� Clustering. Another very large �eld, with again just some discussion in
Chapter 11. The classic reference in this �eld is Hartigan [96]. In machine
learning clustering is often called unsupervised learning, to provide useful
contrast with classi�cation being called supervised learning, since the goals
are related, although in the latter class labels are given, while in the former
they are derived from the data.

� Statistical smoothing. This is one more �eld with a large literature and
many proposed approaches, often with substantial controversy, as reviewed
in Chapter 14. It includes density estimation, essentially a smoothed ver-
sion of histograms, and nonparametric regression which is essentially scat-
terplot smoothing. While smoothing methods are commonly used in ex-
ploratory data analysis, less well known is the con�rmatory method SiZer,
proposed by Chaudhuri and Marron [39].

� Robust Methods. Once again a very widely studied area of statistics. The
main idea is statistical methodologies, which focus on methods with re-
duced sensitivity to violation of assumptions. Much of that e�ort has gone
towards dealing with outliers, which can be very important in OODA, as
discussed in Chapter 15. Major references in this area include Huber [105],
Hampel et al [92] and Staudte and Sheather [201].
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� Data Integration. This relatively new statistical area is driven by the desire
in many research areas to make multiple types of measurements and to in-
tegrate those in a meaningful way in statistical analyses. In OODA terms,
the data objects are typically multiple vectors, which could be merely con-
catenated into a single vector, but there is often interest in understanding
how these relate to each other. This is commonly done using regression
methods, which makes sense when the goal is prediction, but not when
the goal is a non-directional understanding of the relationship. The latter
is accomplished by methods such as canonical correlation analysis, partial
least squares and the more general JIVE approach discussed in Chapter
17.

� Thinking about others: Time Series??? (no chapter, add in somewhere?
Maybe Chp F, directions for visualization?) Probability distributions &
Model based inference??? Design of Experiments???

2.5 OODA Software

Links to available software are provided on the web companion to this book at
Marron ???.

� References to available packages

� Marron's Matlab OODA software: http://marron.web.unc.edu/sample-
page/marrons-matlab-software/ ??? how to cite? ???

� Show scripts for some of the examples??? Put in an appendix? Just on a
referred to website?

� Explain format for later



Chapter 3

OODA Background and

Related Areas

This chapter discusses the origins of the OODA terminology in Section 3.1.
Other related types of general statistical frameworks are described in Sections
3.2 and 3.3.

3.1 History and Terminology

The terminology Object Oriented Data Analysis (OODA) has a clear connec-
tion to the notion of Object Oriented Programming from Computer Science.
A good de�nition of that is: Programming that supports encapsulation, inheri-
tance, polymorphism and abstraction.

The use of these concepts in a statistical context was pioneered by John
M. Chambers and colleagues at the former Bell Laboratories, through the de-
velopment of the statistical software package S and subsequently S-Plus. See
Venables and Ripley [219, 220] for good overview. An important historical point
is that S was a major precursor of the currently very popular statistical software
package R [207].

OODA itself has its roots in the concept of Functional Data Analysis (FDA),
which was pioneered by James O. Ramsay and colleagues, see the monographs
by Ramsay and Silverman [177, 178] and Ferraty and Vieu [72] for good overview
of this area. While this use of �functional� is now quite standard in statistics,
it is problematic for researchers with a strong mathematical training, because
in that area a functional is essentially a function which maps functions into
numbers (or more precisely maps a vector space into its underlying �eld of
scalars). Personal discussion with James O. Ramsay led to the realization that
the notion of data objects, i.e. atoms of the statistical analysis as discussed in
Chapter 1, provides the basis of this way of thinking, which led to the coining
of the term OODA in Wang and Marron [223].

70
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The perceived value of scienti�c naming is an interesting cultural issue. Com-
puter scientists seem to enjoy coining many names, trying them out for a while
and then frequently abandoning most of them, except for the few that are viewed
as having �gained traction�. In contrast statisticians have a noticeable tendency
to be very careful, in fact are usually quite conservative, about applying new
names. Some have observed that at statistical meetings there tends to be too
strong a focus on a rather few fashionable areas. At the time of this writing
sparsity and FDA are the over-represented areas, in the past the perhaps overly
dominant areas included kernel smoothing and robustness. A perhaps natu-
ral question at this point is whether this apparent narrowness of fashionable
research is a consequence of the reluctance to seek new names.

The terminology OODA itself has raised objections on occasion. For exam-
ple, Lu et al [134] contains an example demonstrating the value of the OODA
viewpoint. The example came from the desire to automate the basic biological
science practice of growing cells in wells on a plate. A challenging part of that
automation was making the decision of when to move a subset of the cells to a
new well based on digital images, because they have grown to �ll the capacity
of the current well. The issue of what should be the data objects, between
features summarizing aspects of the whole well (e.g. cell counts) and features
of individual cells (e.g. shape and size aspects), turned out to be pivotal to
the investigation and even led to some interesting theoretical work discussed in
that paper. An early submission of that paper was rejected by a well known
journal on the grounds that the terminology of �data objects� did not bring
added value over the more traditional �experimental units�. This point made
sense for that particular project, but is limited in the context of the larger data
analytic picture. In particular, generally choice of data objects includes not only
experimental units, but also data representation issues, for example the choice
of original versus log scale illustrated in Figure 1.1 of Section 1.1, the choice to
focus on amplitude and/or phase variation in Section 1.2, the choice of shape
or tree representation discussed in Sections 1.3 and 1.4, and which aspect of
sounds an analysis should be centered on in Section 1.5.

The discussion of the overview paper by Marron and Alonso [145] covers
quite a few other interesting aspects of OODA.

In some situations, there have been variations on the name OODA. For ex-
ample, in 2010-2011 the Statistics and Applied Mathematical Sciences Institute
hosted a program on OODA under the name Analysis of Object Data. That
version of the name is also prominently featured in the monograph Patrange-
naru and Ellingson [165], which provides an important overview of statistical
analysis for data lying in manifolds and manifold strati�ed spaces.

3.2 Compositional Data Analysis

The �eld of statistical compositional data analysis goes back at least to Aitchison
[1]. The original motivation was the study of variation in geological composition,
in terms of vectors of proportions.
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Data objects in that context were typically vectors v ∈ Rd, each entry of
which is the proportion of a given material in the geological sample. Note that
each such object v = (v1, · · · , vd) is a point on the unit simplex in Rd, i.e. vj ≥ 0

for j = 1, · · · , d and
∑d
j=1 vj = 1.

Good insight can come from considering such data objects to be probability
vectors, as is common in Markov Chains, see e.g. Hastings [98]. In econometrics
terminology, such data objects are sometimes called fractional responses, see
Papke and Wooldridge [162, 163] and Murteira et al [156].

Data objects restricted to the unit simplex create some serious statistical
challenges. For example, standard Euclidean analysis methods such as PCA (see
Sections 1.1 and 2.1 and Chapter 16), or even use of the Gaussian distribution
for statistical inference become clumsy at best, because such methodologies tend
to leave the unit simplex.

An often advocated choice of data object in this context is the log-ratio
method, developed by Aitchison and Shen [3] and Aitchison [1, 2]. This ap-
proach has worked well in many analyses, and is especially appropriate when
the primary focus is on ratios of di�erent amounts. However, in other situations,
there can be a cost of some distortion, particularly when some entries are 0 or
near 0. This has motivated other data objects choices for compositional data
analysis, such as the square root transform which moves the data from the unit
simplex to the unit sphere, in e.g. Scealy and Welsh [187]. Other power trans-
formations have been proposed and studied by Tsagris et al [214] and Scealy
et al [186]. Butler and Glasbey [35] address this issue using a latent Gaussian
modeling approach, while Stewart and Field [202] took a mixture modeling ap-
proach. Scealy and Welsh [188] provide a fascinating historical discussion of
major controversy that has occurred over their data object choices.

See Xiong et al [233] for a quite di�erent example of data objects on the unit
simplex, in the context of virus hunting using DNA methods. That paper also
considered unit sphere versus simplex data object representations and found the
best performance in that case came from working directly on the unit simplex.

3.3 Symbolic Data Analysis

Another statistical area related to OODA is Symbolic Data Analysis, see mono-
graphs Bock and Diday [24] and Billard and Diday [22]. The goal of that
area is to �nd intuitive summaries of various aspects of relational databases.
These summaries, are called symbols, which are distributional summaries, such
as ranges (intervals), frequencies (for categorical variables), histograms or quan-
tiles. There are at least two levels of relationship between Symbolic Data Anal-
ysis and OODA. In some situations, some type of symbol (e.g. probability
densities) can be the data objects of interest. However, given any set of data
objects, the large and well developed set of Symbolic Data Analysis ideas can
provide a number of types of useful summarizations via symbols of the data set.

An important historical note is that the terminology Symbolic Data Analysis
came �rst, going back at least to Diday [56].
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3.4 Other Research Areas

There are several other areas, not discussed in detail here, where OODA ideas
and terminology are potentially very useful, mostly because of the many com-
plicated research questions that are typically addressed there.

One is Object Oriented Spatial Statistics, reviewed by Menafoglio and Secchi
[153]. In this area a number of the tasks and approaches considered in this
book are extended to the important case of spatial data. These include data
sets where location plays a key role, and must be properly included in competent
analyses.

Another such area is Natural Language Processing. This area aims to de-
velop algorithms for the computational extraction of meaning from text. One
part of that �eld is called latent semantic analysis, see e.g. Martin and Berry
[151], where the key idea is singular value decomposition (essentially PCA with-
out mean centering, as noted in Chapter 16) of some variation of an occurrence
matrix, which summarize appearance of words in large sets collections of docu-
ments. As noted in Berry and Browne [20], there are many data object choices
to be made, in terms of both how to summarize word/phrase occurrences and
also how to weight various aspects of the decomposition.

Yet another such area, which has had a major impact on both neuroscience
and also the study of many aspects of human behavior is Functional Magnetic
Resonance Imaging, see e.g. Huettel et al [109]. This method involves brain
imaging over time, using blood �ow as a surrogate for brain activity, measured
at a set of voxels (the three dimensional version of pixels). Many choices of
data objects have been made in this area. In some studies, the focus is on a
particular voxel (thus one brain region), so the time series at that point is the
data object choice. In other studies the behavior over time is summarized to a
single number, so the data objects can be three dimensional objects. Still other
studies treat the full 3-d movies over time as data objects. An example, showing
joint analysis of how imaged brain function jointly interacts with behavioral
scores is discussed in Section 17.

One more research area with close links to OODA is Deep Learning, which
aims to provide computational methods that work in ways parallel to the hu-
man brain. Main methods in this area are based on neural networks, which
go back at least to McCullough and Pitts [152]. That area was quite popular
in the 1990s, but seems to have been over-advertised at the time, with many
attempted applications apparently failing to live up to their promise. However,
more recently there has been a very strong resurgence, perhaps fueled by much
larger typical data sets, together with much more powerful computing capabil-
ities. These ideas have created research revolutions in areas such as computer
vision. See Demuth et al [54] for important ideas in this area. Benjio et al
[19] suggest that much of the success of deep learning methods comes from the
ability of neural networks to provide a type of automatic data representation.
For example, in classi�cation tasks, the last step is typically a classical method
(of the type discussed in Chapter 10), while the preceding neural layers are use-
fully viewed as providing inputs, via a search over a very large potential feature
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space. This can be viewed as an interesting way of automating the step of data
object representation, as discussed in Section 2.1.

In the context of Natural Language Processing, Baroni et al [14] showed that
in many cases neural network based word embedding algorithms gave better per-
formance than traditional matrix factorization based approaches, for a variety
of standard measures. However, Levy et al [127] demonstrated that these per-
formance gains are likely due to data object choices that can be easily carried
over to make the traditional matrix factorization approaches achieve state of
the art performance.



Chapter 4

OODA Preprocessing

An acronym going back at least to the early days of computer programming
was GIGO for �Garbage In - Garbage Out�. That principal certainly applies to
modern data analysis, yet seems to be all too frequently ignored. This chapter
describes some useful ways for understanding data problems and some remedies,
that scale in a reasonable way to larger data sets. Section 4.1 gives examples
demonstrating the importance of a careful study of marginal distributions and
how they can be used to guide data object choice. The often useful approach
of normalization (usually shifting and scaling of variables, but with some often
non-obvious variations) is discussed in Section 4.2. Another data representation
point is transformation of variables which is considered in Section 4.3. Finally
Section 4.4 studies registration, which is one more data object representation
issue that is relevant to image and shape analysis, as well as to phase variation
in Functional Data Analysis.

A general term that encompasses all of these issues is data provenance.

4.1 Marginal Distributions

Marginal distribution plots were introduced in Section 2.2.1, where Figures 2.5
and 2.6 illustrate how they can provide useful diagnostics. As noted in that
section, the challenge of trying to visualize a large number of marginal distribu-
tions can be met by selecting a representative subset of the variables to actually
look at. The idea of sorting on a one dimensional summary statistic (e.g. the
mean as in Figures 2.5 and 2.6), is essentially that of Tukey's scagnostics, see
Wilkinson et al [229, 230] for good overview and discussion. The di�erence is
that scagnostics is about using numerical summaries (e.g. correlation) to �nd
interesting scatterplots from a large collection, while in contrast these marginal
distribution plots are about doing this for a large collection of one dimensional
marginal distributions.

An important point is that many distributional summaries besides just the
mean can be very useful. This point is made here using a chemo-metrics data
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set which also demonstrates the value of this type of visualization, together with
appropriate adaptation, before meaningful analysis can be done. The example
studied here comes from the area of drug discovery, or more precisely Quantita-
tive Structure Activity Relationships as discussed in Cherkasov et al [41], with
this particular set from Borysov et al [27]. There are n = 262 chemical com-
pounds, that are represented by d = 2489 chemical descriptors. The primary
goal is to distinguish inactive compounds shown as blue circles, from active ones
shown as red plus signs.

A PCA scatterplot matrix, using the same format as Figures 2.10, 2.13 and
2.17, is shown in Figure 4.1. This view of the data is dominated by relatively few
of the data objects. Almost all of the n = 262 data points are tightly clustered
near the origin, which seems to be where any meaningful di�erences between the
actives and inactives may be found. However, as indicated in Figures 2.17 and
2.18, there can be a large amount of interesting structure in data which is not
apparent from merely looking at PC scores. There are many potential causes of
such behavior. One of these, that is frequently worth checking, is the behavior
of the marginal distributions. For example highly skewed marginal distributions
(such as a log normal distribution) can frequently generate such data views.
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equally spaced set of distributions. This is done for the drug discovery data in
Figure 4.2. The upper left panel shows the sorted means as a blue curve. Note
that most of the means appear to be around 0 with a few relatively huge values
on the far right. Because PCA �nds directions of maximal variation, these
very few variables are potential drivers of the unfortunate population structure
observed in Figure 4.1, and there may yet be useful population structure that
will emerge when those variables are properly handled. Note also the rather
small downturn in the blue mean curve on the far left.

Eight marginal distributions (that number is chosen merely for convenience
of plotting) corresponding to the vertical dashed lines are shown in the remaining
panels. These show huge heterogeneity in the variables present in this data set.
The �rst few show no variation at all, i.e. all values are exactly the same. In the
�rst marginal distribution, they are all equal to -999 (this perhaps surprising
value is explained below). For the next three variables, all values are 0. The
center right variable is all 0's except for a single 1. The variables on the bottom
row are also wildly di�erent from each other, with a discrete distribution on
the left, and a clearly skewed distribution, with values that are four orders of
magnitude larger, on the right.

That value of -999 is sometimes used to code missing values (in fact this is the
case here), perhaps with the idea that it is so di�erent from all the others that
it would be easily noticed and properly dealt with during an analysis. However,
that idea failed in this data set, because there are some variables that are so
much bigger in magnitude (which may have added to this combined data set by
a di�erent analyst). In particular, because -999 is a number, it would be easy
to make the big mistake of treating them as data. This type of e�ect easily
arises in Big Data contexts where there is a lot of merging of diverse data sets
in contexts where no individual has a complete understanding of all aspects.
This Marginal Distribution type of visualization is often e�ective in discovering
such anomalies.

Figure 4.2 makes it clear that a number variables with no variation (and
thus no information about active vs. inactive compounds) can be deleted from
the data set with no loss of information. It also indicates that careful attention
should be paid to the missing values, coded as -999, and �nally that both the
relative magnitude and skewness of other variables will need careful considera-
tion.



������� �	 

�� �����
������ ��

������ 	
�� ������� ������������ ���� ���� �� ��� ���� ��������� ����� ������
�� ������ �����
 ����� ����� ��������� �� ��������� ���� ���������
 ��� ����
�� ��������� ��� � ���� ��� ��� ������ �� ��������� ������


������ 	
 ����� ��� �������� �������������� ���� ���� ������ �� ��� ������
�������� !�������� "�!#
 $��� ������� ��������� ����� � ���� ����� ����� ��
����� ��������� ���� �� ���������� ��������� ���� ���� ��� ������ ���� �� ���
d = 2489 ���������
 $��� ���� �������� ������� ��������� ������� ���� ������ 	
�
���� �� ����� ��� � ��� ��������� ���� ��� ������� ������ �� ��������� �������
��� ��� �������������� ������ ��� ���� �������������


%� ������ ��� ��� ��������� �� ���� ��� ��&� ����� ���� �������������� �������
�� ��� ���� �� ��� �������� "�
�
 �������#
 $��� ��� �� ���� ������ ��� ������'(
������ �� ��������� �������� �� ����
 )��� ���� ��� �������� ���� ������� �!�
������� ��� �� ��*����� ���� ��� �������� �+,-.� ����� ��� ��� ������� ����
"������ ����� �� ������ 	
�#
 /� �������� ��� �������� �01����� ����� ��� ����
�� ���� ��� �������� ���� "���� ���� ����� ����� (���# �� ������ 	
�� ���� ���
������ �� ������ 	
 
 $�� ������ �� ���� �� ��� ������ ��������� ����� ��� � �����
������ �� ��������� ���� �! 2 .� ��� ��� ����� ������ �� ���� ��� ���3�� ��
������ ����� ��� �������� �������� ��������




������� �	 

�� �����
������ ��

������ 	
�� ������� ��������� ������ �������� ������������ ���� �� ��� ����
��������� ����
 ������� ���� ��������� ���� �� ���������


�� ���� �� ������� 	
� ��� 	
� ���� ��� �� ������� ���� �������� ���!
��������� "���� ����� �#����� �"���� $���� ���"��� �� ��� ������� ���������%
��"����������� �������������
 &������ �� ���� ���������� �� �� ���� ������ �� ��!
��� �� �� "��������� "���� �� ��� ���������� ����� ����� ���� ��� �������� ���'��
��� ������� ������� ��������
 ��� �(��"�� ���� ��� ���� �� ��)��� � ����
������� ���) ���� ��� ������� ������ ����� �� !*** �� ��� ���� ��������� ���� 
������ 	
	 ����� ��������� ������������� ������ �� ���� ��� ��� ����� ��� �
�������� ���� ������
 +��� �� ��,����� �� ��� ����� �� ��� �������� ������ �����
�""������ �� ��� ��� �����
 -� ������� ���� ����� ��� ��( ��������� ���� ��� ���
������� $�
�
 ��� ������ ��� !***% ��� �� ����� ��� ���� ���� ���� ��������




������� �	 

�� �����
������ ��

������ 	
	� ���� �������� ��� ������� ����� ��� ����� �������� ���� ��������
������������
 ����� ��� ��������� ��� ��� ���� �� ������ ���� �  �� �����


������ 	
! ���������� � �"����� ��� � ���������# ���� ���� �� ������� �� ���
������� ����� � ���� �������� �����������
 $� ���� ���������# ���� ���� ��
���� �� �������� ���� ����� �����# ����� ������� � ��� ���� ��� ����� �� ���
�������
 %
�
 ������ � ������ ��� ������ �� ���� �� �� ������� � ��� �����
�����# ��� ����� ��������# $&	# ���� ��'�� �� ���� ���� (�� ��� ��� ������ ��
������ 	
	)
 *�� ���� + ��������� ��� ���� � ������� � ,# �� ���� ������ �� ��
��������� ����# ����� �� ��� ������������ ��� ��  �� ����������� �����-�� ��
���� ��� ���# �������� �� ��� ������ �� ���� ��� ��� ������������� �������
����




������� �	 

�� �����
������ ��

������ 	
�� ������ ����� ������ �������� ������������� ��� ��� ���� ���������
����
 ����� ����� ���� ����� �� ���������� ��� ���� ����������� ������� ��
��������� �������� �� ���� ����


����� �� ��� ����� ��������� ��������������� ����������� ���� �� ���� �����
���� !"!� ��������� ���� �� ���������� ��� !# ���� ��� �� ����� ��� ����� ��
$%%%
 &������ �� ����� ��������� �������� �� � ������� ���� ��� �� d = 1164
���������� ����� �� ������� ������� �� ��� ���������
 '� ����� ����������� ����
���� ���� ��� �� ������ �� ���� ���� ������� ������
 � ������� ��(������
����� �� ������� ������� ������ ������ �� ������� )����� �� �������� ����� �����
����� ��� �� ��� ��������*� �� ���� ��(���� �� ��� �� ������� ����
 +�� ,�����
��� -��� .�!/ ��� 0����� .#�/ ��� ���� �������� �� ���� (������� �((������� ��
���� ��(�������
 1��� ��(� �� ���� ��2��� ������ ��� �� ���� ������������ ���
�� ����� ���� �3�������� ���� �� ������������ ���� ��� ���� (�������


� 45� ���� �� ��� ������� ���� �� ��� ����� ���� ������� �� ���6� �7�����
��6� ������ 	
! �����
 1�� ������ �� ���� ���� ����� ��� ������ �� ��� �����
��������� ���������� �� �� ������ ����������� �������� ���� �� ��������� �������
�������
 ���� �������� ��� $%%%� ��� �� ������� ��(��� ������� ��� ������
��������� ��� �� ���� ������� �� �������� �� � ������� ���6 �� ��� �7�� ������ ��



������� �	 

�� �����
������ ��

������ 	
�

������ 	
� ����� �� ��� ��� ������� ���� ��
 ��� ��� ���� �� �����

���� �� � ��� �������� ���� �������� ����� ���������! ����� ��� ��� ��� ����
�������� ���� ��������� ��� ��� �� �������� ��� "������ �� ��� ����� 
��������
 ��� ��� ���� ����� �� ��������� ����� ���� ��� � "� �� �������
�#�����! � �������� ���� �������� � �� ������� ���������! ���� ���� � ����
��$����� �����! "����" ��������� ����� � "� �� �������� �� ��� ����! � ���
���� �� ������� 	
%
 &��� ���� ��� ����� ����� '������� ��( ��������! ��! �
��� ��� � ��� ����� ����� �������� �� ������ 	
�
 ��� ����� ��� ��� ��$�����!
������ ��� ��� �)���� "���� �� � ������ �� �� ��������


������ 	
�* ���� ������� ����! ����� ��������! ������ ���� �������� ������
������ "��� ����� �� ������� ���������
 ���� ����� ��$����� ���������


������� �� ��� ����� "���! �
�
 ���� �� ��� ����� ����� "���� �� ������
	
�! 	
+ ��� 	
�! ����� ���� ,���� � � ����� ��� ��� �� ���� ��� ��
���� ��������
 ��� � ��"������ ������ �� ������ 	
- � ������ ��� ��������
��� ���� �� ,����
 ��� �""�� ���� ���� ����� �������� ���� ����� ,����
���� ���� ,����! �������� ���� � "� ��� "�����
 .� ��� ���� ����� ��� �



������� �	 

�� �����
������ ��

������ 	�
�
��
 �� ����� ������
�� ������ �� ���� ��
 ����
� � ��� ��
���
 �� �������� ���� ��
 ������
� ���� ������
�� ��
��
�� ���	��
� �
�
 �

�� !"#$�! �� ��
 ���
� ����� 	��
�% ���
 �� &��� � �����
 ����
 �� �� ���� ��� ���
�
n − 1 = 261 ����
� 
��� �� '�
 ����
 (�� �	�� �� ��
 �		
� ����� �� ��
 ��

����
 ����� �� ��
 �		
� �
�� 	��
� �������
� ���� �� ���� ��
�
 ��
 ��)
 �����
��
�� ���� ������
�� $���
������� �����) �� ���� ���� ������
� ������� �����
 ��
���
�����)����� ��� ���� ������ ���� 
 
��)����
� ���) ������
������� *��
�
��
��
 ����
 ��)
� �� ��
) ����
��
� ���� ����
 )�� 
 ����� � �
���� ����� '���
��� ���
 �� +������ 
� �� ,-./ ��� ����
� ���� �� ���� ���
� ��
�
 �������� ��
��
��� �����)����� �� ��
�
 ������
� ��� �
�
��	
� )
����� ��� �����	�������
��
) �� ���� ������
��

�����
 ��.0 1������� ����������� ��
� ����
� �� ��
��
��� ��� ��
 ��
�� ����
������
�� ����� 2���� )��� ������
� ���� ������ ��
��
��� ��������� �����
�������������

3�
� ��
�
 �� � ��)������� �� �����
�
 ��� ���������� ������
� �� � ����
�
�� �� ����
��
� �� ��
 ���
 ������
�� ��
�
 ��
 ���
� �������� �� )�������
������������ ���� ��
 ���� 4���
 ��
���� "�
 �� ��
�
 �� ��
 ��)
� �� ���4�




������� �	 

�� �����
������ ��

������ 	
� ��� ��������� �� �
�� �� ������ ���� ��� ������� ������� ������
��������� ���� ��� 
��� ��
 ������ ������� �� ������� ��� ����� ��� ��
���� ����� �� �� ����� ��	� ����� �
���� ������ �  ���� !� �""���
� �
 �
������ 
	 ������� ����� "������� ���������� ���� ��� ��������� ��� �� #$% ��
�� ��""�� ��	� ��� ������ �
 �� �
�����
�� ��" ��� �
����� � ����� ������ 
	
�&��� ����������� �� ����� ��	� ���� 
	 �� ���� ����� ������� ��� ���� ���
���� 	�� ����� �
�����
�� ���������� 	
� ��� �� ������ 
	 ������� �� n = 262�
�� 	
� '(��� �� �� �
��� ���� ������

������ ���) *���� �������� "���������
�� 
	 "��� "���
���� "���� �
���" 
� ���+
��� 
	 �������� ,
�� ��"� ������ 	�
� ������ ������� �  ���� �
 �
��������
�
�����
�� ����������

' "�-����� ��� �
 ���"� "����������� ������ �
�������� 
	 ��������� �� �
 �
��

� ������ ���	 
������	 �� �� ������ ��.� ��� ������� �
���� �� ������ 
	
����� ��� ����� ������� �� �� "���������
� ��" ���
��� �� ������� 
	 �
���
��� ������ �� % 	
� �
�����
�� ���������� ������� ��� ������ ��� "�-������ /
��
��� �� �
�� �
�����
�� ��������� �!(� �� "�-����� 	�
� �� �
�����
�� ����+
���� '(��� �
�� �� �� �
��� ���� ����� 
	 ������ ���� 0���� ���� ��� �� �����
��
 ����� �
�����
�� ��������� ������� '(��� ��" �!(�� ��� ������ �� "�-��+



������� �	 

�� �����
������ ��

��� �����	 
� ��� ��� 	���	 ��� ���	�
�� �� ��� ���� ����
����	 ���
����	 ���

���	����� ����� �� ���� ��������� 	���
�� �� ����
�� �� ��� 	�����	� ���
����	


� ��
	 	���� �� ��� �����	� ������ �� ��
���	 �	
�� ��� �����
�� 
� �
���� ��

�� ��
	 ��	� ����� ��� ����  ���
����	 ��
�� ��� ����� ����
����	 
� ��� 	��	�

�� ���
�� nuniq = 262 �� ��
	 �
��� ��� �
���� ���
����	 ������ �� ��� �
����


� ��� ����� �� ��� ���� �
��	 ��� ��!��
�� �����	 ������ ��
	 
	 �������

��� �� 	��
�� ���� �������	 �� ���
����	 ���� !�	� � ���� ��� ���"#��� �����	

$����	� ��� 	���
	�
��� ������	 ��� ��	
���� �� ������ 	��� � �
% �� ����
����	

��� �
	����� ������	� ��� ���� �� �	� ������	 	��� �	 ���	� �
	���
#��
��	 
	

�����
�� 
�����	
���� 
�������� 
� $
� &��� �����%�	

�
���� � ' &��� �
	������ ����� ����� �����
�� (���&
	�)��� 	����� �� ������

��	� �������� *������ ��� �� ������	�
�� �
	����� ��� ����
����	 ���
����	�

���
� 	���
�� � �
�� ����� �� ���� ����	

+
��� ��� ����� ������ �� �
���� ���
����	� � ���	�
�� ��
	�	 �	 �� ��� ����


�������
�� ��� 	������
�� ���
�� ���	�	 
����
�� ��������	 
	 ���	��� 
� ���	�

���
����	 ���� �� 	���� ��
	� ��� ���� ��� ������� �� ���� ��� d = 364 �
����

���
����	� �
�� ��� ��	���
�� ),* 	���������� 	���� 
� �
���� �-. ��
	 	���	



������� �	 

�� �����
������ ��

���� ���	
�� ����������� ���	 ��������� � �	�� �
�
 ���	 ���� �� �	� 
�����
�
��� ������� � ���� 
 ��� ������ 
� �
���� ������ ���	 ������
��� � 
�����
�
���� �� ���� 
����� ������� �� 
� ���� ����� 
 ���� ���
���� 

����� �� �	��
��
�� �
�
 ����

 ����� !�"#$ %��� ��������� �
�
� 
���� ���
��� &'� �
��� � ��
�� �
��
����
���� (	��� �	��� �
��
���� ���
� ���	 ���)���� ���
�
��� �����
����
����

*	�� ������ 	
� �	�� �	
� �
���
� ����������� ����� �
 �������� �
�
������
� 
������ �� �
�
 ����� + �
� ����
����� �	��� �
 �� ������
� �
����
��� ���
������ ���	 
� �
��
��� �������� ��
��� ,
� ������� � (����� !��-

�.�� ��
�����
��� ,��� (����� !�/- �	
� �
 �� ���� ������
� �� 
������

� 
 �0������ �
�
 

������ � ��� ������� ���� ����
�� ��
������� 	
��
��� �������
��� 	���� ��� �
� ��	��� �
 �� �1�
��� ����
��� � ��	��
����
�����  �� �2
���� ��
�� �
���� �� 3������� �
 �
���� 4� �
��
���� ���	
����� �����
� ���������� %
�
 ���� ���	 ������ �������� �
 
�������� 
0���
�������
� ����� �
��� ����
����� � �	��	 �
�� ������ ����
����� ���	

� �	� ������ �3�����)��3� ��
���� �� ������ ���� 
� �	� ������ 3�������)��3�
��
���� �� 5������ �"���� �
 �� ���� ������� � ��� ��������� ���� 6)��
�������



CHAPTER 4. OODA PREPROCESSING 88

based methods that are quite e�ective at �nding important genes in the context
of cancer research.

4.2 Standardization

As illustrated in Figures 2.15 and 2.16, when some variables are orders of mag-
nitude larger than others, the larger ones can completely dominate many types
of statistical analysis. As done there, a common strategy is to standardize each
variable, subtracting the mean and dividing by the SD. The e�ect of this on the
cleaned drug discovery data from Section 4.1 is demonstrated in Figure 4.11.
Unlike the outlier driven PCA shown in Figure 4.1, this view shows much more
in the way of interesting relationships between the data objects, i.e. the chemi-
cal compounds. In particular, it is clear that there are now very complex (e.g.
highly non-linear) relationships between the active (red pluses) and inactive
(blue circles) compounds, which is why drug discovery has been a challenging
problem over the years. Note for example an indication of small regions where
interesting comparisons can be made, which motivates the idea of activity cli�s,
(regions of abrupt transition between classes) as studied in Maggiorra [135].
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Xiong et al [233] found that projection to the simplex gave better results than
projecting to the sphere.

4.3 Transformation

As seen above relative magnitude of variables is an important consideration.
Similarly distributional shape of the marginal distributions can also have a ma-
jor e�ect as seen in Figures 2.5 and 2.6. Another example that illustrates this
point is shown in Figure 4.12. This data set was a product of the Cancer Genome
Atlas, Weinstein et al [228]. In particular the data were preprocessed by Hoadley
et al [102], who explored many contrasts between 12 cancer types, based on a
variety of measurements. . Here we focus only on gene expression and restrict
the cancer types to Ovarian Cancer, which is labeled as OV in TCGA notation
and shown as purple circles, and to Uterine Cancer, labeled UCEC and indi-
cated using green plus signs. Furthermore only the 1000 most variable genes,
among genes having no missing values, are considered. The raw data are counts
indicating gene expression, measured using the RNAseq technology, see Wang
et al [225]. The full data set (with a few hundred cases of each type) shows a
strongly statistically signi�cant di�erence between these two cancer types for
almost any type of analysis, so for good contrast between statistical methods,
randomly chosen subsets of size n1 = n2 = 30 cancer patients are analyzed here.

The top row of Figure 4.12 shows PCA scatterplot views of the data. Unlike
the scatterplot matrices shown above, e.g. in Figures 4.1, 4.10 and 4.11, here
each plot shows only PC2 vs. PC1 scores scatterplot (often the left plot in the
second row in matrix views). The upper left panel of Figure 4.12 studies the
distribution of raw counts. Note that PC1 is dominated by a single very large
case (about an order of magnitude bigger than all others). PC2 is driven by a
handful of other cases, but still only a relatively few. While one might hope to
see a large di�erence between the OV and UCEC cases, if it can be seen in this
scatterplot, it can only be in the lower left part of the plot, but is very hard to
perceive due to over-plotting. For a closer view of potential class di�erences, the
top center panel shows a zoomed in (on the lower left corner) version of that plot.
This makes it even more clear that this data set su�ers from strong skewness
(which can also be easily seen using the Marginal Distribution views described
in Section 4.1), with essentially no OV-UCEC di�erence visible. This does not
mean that there is no di�erence, only that it does not appear in the 2 dimensional
subspace of the �rst 2 principal components. For such strongly skewed data, a
log transformation of each variable is often very useful, as it tends to strongly
reduce the in�uence of data points that are orders of magnitude larger than the
others. The top right panel shows the result of the log2 transformation applied
to each variable. That transformation is usual in this �eld, where the doubling
interpretation of that log base is commonly desired. Note that these two modes
of variation highlight a clear and strong di�erence between the cancer types,
appearing as mostly the dominant mode of variation (i.e. the PC 1 Scores).
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PC1 PC2

Raw Data 88.2 4.7
log2 Data 24.8 9.9

Table 4.1: Percent of sums of squares about the mean explained by the �rst
two principal components, for the raw gene expression (top row) and the log2

transofrmed version of the same data. Shows that log transformation gives more
sensible distribution of variation in the data.

used several times above, e.g. the Marginal Distribution plots in Section 4.1,
using symbols whose x-coordinate re�ects the value with y-coordinates simply
providing visual separation. The black curve is a kernel density estimate, with
the colored curves representing proportional sub-densities for each of the two
data types. The middle left panel shows this distribution for the raw counts
data. As in the top left panel, the di�erence is not easy to discern because
the view is again dominated by a single large outlier, which obscures how well
separated the two groups are. The zoomed view in the center panel shows
that actually the MD direction provides decent separation of the classes, with
the green plus UCEC cases tending to lie more to the left of the OV purple
circles, although there is substantial overlap. This overlap is quanti�ed using
the Receiver Operating Characteristic (ROC) curve of Hanley and McNeil [93],
in the lower left panel. This curve is generated by sliding a cuto� point along the
horizontal axis of the left middle panel, and for each such point displaying the
proportion of UCEC (green) points that are smaller on the vertical axis versus
the proportion of smaller OV (purple) points on the horizontal axis. The fact
that more UCEC points lie to the left is re�ected by the curve moving fairly
steeply upwards. Once the cuto� point includes all UCEC points the curve
remains at height one. The fact that this curve lies mostly towards the upper
right of this plot shows that the two populations are relatively well separated.
A simple numerical summary of ROC behavior is the Area Under the Curve
(AUC), which in this case is 0.86.

The middle right panel studies the MD projections for the log2 transformed
version of the data. Given the obvious group separation in the PC 1-2 scatterplot
in the upper right panel, it is not surprising that there is a very strong separation
between UCEC and OV that is apparent in this projection. The strong visual
impression is con�rmed in the lower right panel by the ROC plot in the lower
right following �rst the vertical axis, then the top horizontal line, resulting in
an AUC of 1.

A related contrast between the raw count data and the log2 transformed
version is provided using the DiProPerm con�rmatory method, described in
Section 12.1. That hypothesis test for exploring di�erences between the UCEC
and OV cases, using the mean di�erence direction and mean di�erent summary
statistics, for the raw counts gave a non-signi�cant p-value of 0.24, while the
log2 counts gave a strongly signi�cant p-value � 10−4. This is another way of
seeing that analyzing this data on the log2 scale is very well worthwhile.
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An important variation of log transformation is the shifted log transforma-
tion, of the form log (· − c), where the data are shifted by a constant amount c
before application of the logarithm. This is useful both for data which take on
0 or negative values, and in the case of c < 0 is also useful as a typically less
stringent version of the log transformation, that is useful for data with more
mild skewness. This works in the same way as the skewness of the log normal
distribution is controlled by the mean parameter of the underlying normal dis-
tribution. Good automatic choice of the shifted log transformation has been
developed by Feng, Hannig and Marron [69].

Another appealing and widely used family of transformations is the Box-Cox
family

f (x) =

{
xλ−1
λ

log x

for λ 6= 0

for λ = 0,

proposed by Box and Cox [29]. A careful calculation of the limit as λ→ 0 shows
that this is a continuous function of the tuning parameter λ which provides a
di�erent way of adapting to skewness in data. One more important general
family of transformations is described in Johnson [114].

4.4 Registration

Registration, i.e. alignment issues, are often quite important in many types
of OODA. This point is illustrated using an FDA (curves as data objects) toy
example in Figure 4.13, which is similar to Figure 1.8. The raw data are shown in
the left hand panel. Each curve has two peaks, but there is substantial variation
in both locations and heights of the peaks. In contrast to Figure 1.8, this time
the curves are color coded using the height of the left peak, with a rainbow
color scheme ranging from magenta (tallest) through green and yellow to red
(shortest) with the goal of highlighting the amplitude variation in this case. The
varying locations of the peak creates challenges for standard statistical analysis
(which ignores the strong phase variation). For example, the (point-wise) mean
curve, shown as a thick black dashed line, is not at all representative of the
population. In particular, its peaks are substantially lower than any peak in
the data set, and the left peak actually appears as two modes. It will seen in
Chapter 8 that PCA (e.g. as in Figures 1.4, 1.5, 2.4, 2.7 and 2.9) of this set of
curves also provide very poor low rank representations of the data.

The right panel of Figure 4.13 shows the results of a Fisher Rao registration
of these curves as described in Chapter 8. The heights of each curve are the
same in both panels, but in the right panel the horizontal axis for each curve
has been appropriately warped to make the curves align very well. Note that
the mean of this set of curves, again shown as a thick black dashed curve is
now a quite sensible notion of center, as it lies clearly in the middle of the data
set. As seen in Chapter 8, PCA of this set of curves provides a quite intuitive
and much more compact representation (in particular, requiring only a single
component) of the data set.
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Chapter 5

Distance Based Methods

This chapter is about OODA methods that are based only on distances between
data objects. An advantage of such approaches is that they are quite broadly
useful, which can be important in exotic data spaces such as manifolds, or
tree/graph spaces, where simply �nding analytic methods can be challenging.
In particular, the only structure needed on the object space for such methods is
presence of a metric. As noted in Sections 2.1 and 2.4, a quick and dirty default
approach to OODA is to �rst �nd a metric, and then simply do a distance
based analysis. While that is useful in some situations, there are others where a
more careful use of particular data space structure can result in much improved
analyses, as discussed in Chapters 7, 8 and 9.

In this chapter, the symbol δ will be used to denote metrics, i.e. distance
functions. Given a set of data objects

{Xi : i = 1, · · · , n} ,

and a distance δ, the corresponding n× n symmetric distance matrix is

D =


0 δ(X1, X2) · · · δ(X1, Xn)

δ(X2, X1) 0
...

...
. . . δ(Xn−1, Xn)

δ(Xn, X1) · · · δ(Xn, Xn−1) 0

 . (5.1)

Working with data objects in this type of format is rather common in the ma-
chine learning literature, see Cristianini and Shawe-Taylor [46], Schölkopf and
Smola [189] and Shawe-Taylor and Cristianini [192] for good overview. Indeed
a central idea in that area is called the kernel trick, where one works with a ma-
trix of inner products (closely related to the usual distance in Euclidean spaces),
with the important goal of large computational bene�ts.

Distance based notions of center are discussed in Section 5.1. Methods
for understanding variation about the center, in the spirit of PCA, using only
distances are explored in Section 5.2. Clustering is another set of data analytic
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methods, that are frequently based only on distances between data objects.
Cluster analysis is discussed in Chapter 11.

A critical aspect of all of these approaches is that choice of distance has a
major impact on the results of the analysis. For a particularly dramatic example
consider the discrete metric

δD (x, y) =

{
0

1

for x = y

for x 6= y
.

This exists for any space, but is useless for OODA analyses, because it contains
no information about how the data objects relate to each other. Section 7.2
contains some perhaps surprising examples on the impact of metric choice in
the context of covariance matrices as data objects.

Generally good choice of metric is very situation dependent. For example,
in the case of Euclidean data objects, say x, y ∈ Rd, the standard Euclidean L2

distance

δ2 (x, y) = ‖x− y‖2 =

 d∑
j=1

(xj − yj)2
1/2

(5.2)

is often very useful. However, when it makes sense to think in terms of polar
coordinates, and the important variation happens in the angular direction with
mostly distracting noise in the radial direction, a more useful metric can be the
cosine distance

δC (x, y) = 1− 2

π
cos−1

(
xty

‖x‖2 ‖y‖2

)
,

which is driven only by the angle between x and y projected onto the unit
sphere. When outliers are a major concern, the L1norm

δ1 (x, y) = ‖x− y‖1 =
d∑
j=1

|xj − yj | (5.3)

is useful because of its natural tendency to down-weight their in�uence.

5.1 Fréchet mean

An important notion of center of a set of data objects {X1, · · · , Xn} in an
arbitrary metric space S (with distance δ) is the Fréchet mean,

arg min
x∈S

n∑
i=1

δ (x,Xi)
2
, (5.4)

from Fréchet [79]. This is a direct generalization of the standard sample mean
X̄ = n−1

∑n
i=1Xi in Euclidean space Rd, because it is straightforward to show

that X̄ is the solution of (5.4) in the case of Euclidean distance (5.2). Insight
as to how the Fréchet mean works is given in Figure 5.1.
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��� ����� (��������� �� ��� ������� ���� ��(� !��� �������(��� ������� �� ���
0��� �� ��!��� ����������" ��� �
�
 1����� �� �� 2�)3" 1�!�� ��� #�������� 2�-	3
��� 4������ ��� 4������� 2)-�3" !������ !��� ��� ������" ��� ���� ��������� δ
����� ����5������ ������ ������� ����" ��(� ���� ���������� �� ����� �� �������
�������(��� �� ��������
 4�� �������� �� �� 2��3 ��� ����������� ������������ �� ����
�������� �� ��� ������� �� #��������� ���������
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��� � 
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������� �	� ��� �	�	 ����� �� ����� ������� ����� �� ������ ������� ��
��� ��� δ1	  ��� !������ �� ����� �"�� ���������� ������� ��#����� ��
��"����	

 ��� !������� �� �� ������ ������ ��!��"� ���� ������� ���������� ���$
�������� ��� �� δ2 !������	 %� ������"��� �� ��"���� ���� �� �� ����$����
������ &�	�	 ��� ��� �� ������� �� ����"� �'��� �� ������ �� ���� ����$
����� �� �� ��� !�����(� ����� �� �� ��� ��� �� δ2 !������ �� �� ������
������	  ��� �� δ1 !������� �� ������ � ������� ���"� �� �����!� &��
����� ��� �!�� �� ���� ����������( ��������� �� ���� �� �� ���� �� δ2	 )�$
���� ����� ��� �� ���������� �� ���� ������ �� ����� �� �������� ���������	�
�� �""������ �� ������ �	*	  �� ����"� ���� ��+���� ������� �� �� ���� ��
��� �� �� R

2� ������ ��� ��� �� δ1 ��� δ2 ������ �������	 ,������ ��
������� δ2 �� ������ ��!������ �� �"��$����� - ������� �� ������ ������
��� �� ���� ��"��!� ������� ���� �� ��� ��� �����	 ,� ������� �� ���$
���� δ1 �� �� ������ ��!������ ��� �� �� ��� ��� �� !������� ����� ��
�� ��� . ����	  ��� �-���"� �� ��"������"� ��������� � ���� �� �� δ1
������ ������ ��� �� !����� �� � ���� ����� �� ������ �� �� ����� �� �
����""� "��� �� �� �������� �� �� ���!�- ��"" �� �� ���	
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 �� ���� ����
��� δ2  ���� ��!���� ������ �� ����� �� ��� ��� ���� ����" ���� ��� δ1 ��!����
������ ��������� �� ���  ���#����� �
 $���� ��� ������ �� ��� �������� ���������


������� ����� ����� ��%�������" ���� ����  ��� �� ����� ������� ��� ������
��������&������ �� ��� �������� ��� ����������� ������ �� R

1 �� ��� ����� ����
����  ��� ������ �� ���� '������� �� ��� ���� d = 1
 (������� ����� ��� � ��� ��
�� ����� '���� ��%����� ������� �� ������ �� R

d ����� ���� ������ �� ��� ������
�� ��� ���� d = 1" ������� ��� ���� ���� �� �� ����� ���  ���� �� ���� �����

 ���� �����" ��� �
�
 )�� �� �� *�+,- ��� )��!&#.������ ��� /��� *�0�-

1������ ��� ��!���� ���� ��� ������ ��� ���������� ��  � ���'��
 ��� ��

��������� �������  � ���2��� ���� ���� 	��	 3���
�� 	��	" ����
4
 ��� �������"
�� R

1 ���� n �� ����" ��� ��������  ������ ��� ������� ��� ���� ������ �� ���
������ ���
 �� ���� ���������" ��� �� ������" ��������� � �������������� ��
������ ��� ��� ���" �
�
 ��� �������� �� ��� �������� �� ��� R

1 ������ ����
 ��
������� ���� �� ���#���'������ �� ��� �������� ������ δD" ���� ������� �� �����
 ��� ��� ��!���� ���� ��� ������ ���� ��� ��� ���� ���� ���


���� ��� ������������ ����������� ����������� �� ��������� ����� �� 5��� ����
��  ���� ���������  � ��� �� ����� ������� �� ������
 6��� ��� ���� � 5���� ���
������� �� ��  ���� � ������ ������ ���� � ��� � ����� ������ ����� �� ���
� 5��� �����" ���� ����������� ������� �� ���������� ������ ��� ��7��� �����
��!���� ��������  ���� �� �������� ������
 �� ����������" ������ ��!���� �����
�� ��7��� �� 3	
�4 ���  � �������� ������� �� ��������� �� ��� ����������� 3�
 �

����������4 ��!���� �����

argmin
x∈S

Eδ (x,X)
2
,

����� X �� � ������ ����� �� ���� ��� ���������� ��� � ����� ������ �����

$�������� ��� ��!���� �������
 8��� �������� �� ���� ������� �������� �������
����� �� ���������� ����������� �� ��������� �� ����� ���������� ��������" ��
��� ����������� ������� �� ���� � 5���� �� ��������� ��� �������� ������7��
�����" ���  � ����� �� .����������� ��� 9�������� *�:	-
 $��� ����������� ����
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recent results can be found in Huckemann and Eltzner [108], Huckemann and
Hotz [106]. See Hotz et al [104] for a particularly unusual limiting distribution
theory for the Fréchet mean in a manifold strati�ed space.

There are several synonyms for the Fréchet mean. These include barycenter
(really the center of mass in physics, when using the Euclidean distance δ2),
Kärcher mean (usually used in the context of geometric quotient spaces, see
Chapter 7), and geodesic mean (when δ is a geodesic distance, say on a curved
manifold, again discussed in Chapter 7). Similarly there are synonyms for the
Fréchet median including geometric median, spatial median and L1 M estimate.

5.2 Multi-dimensional scaling

As with notions of center, there are many ways of quantitating variation about
the center, based solely on metrics. A very simple one is the Fréchet variance
which is just the minimum value attained in (5.4).

But generally more useful for data analytic tasks, such as those discussed
in Sections 2.2 - 2.4, are distance based analogs of PCA. One approach to
this is multi-dimensional scaling (MDS). MDS has been very popular in the
psychometrics literature, and at least the nomenclature is usually attributed
to Torgersen [211, 212] and Gower [86]. However, the underlying mathematics
are substantially older, see Eckart and Young [63] and Young and Householder
[236].

In its simplest form, MDS starts with a set of n data objects, with a known
set of pairwise distances between them summarized as a distance matrix as in
(5.1), and seeks to represent them as a set of points x1, · · · , xn ∈ Rd for some d,
in such a way that the Euclidean distances δ2 (xi, xj) approximate the elements
of D as well as possible, in various senses. When the input distance matrix D
is itself composed of pairwise Euclidean distances δ2, typical basic algorithms
return xi as the vector of the �rst d PC scores. In that sense MDS extends PCA
to cases where only distances are known. A toy example is shown in Figure 5.5.
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�� ��	 ��� � ������ ��� ��	�� �! ����	� ��� &��	+	 3��45� �		 �	"���� 4�6 �!
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similar to the 2nd components shown on the vertical axis of the left panel in
Figure 5.5. But a careful look at the extremes in the two cases show these are
actually quite di�erent, because in Figure 5.6 these scores must follow a direction
orthogonal to PC2. For many purposes these issues seem like weaknesses of this
representation, although in the spirit of kernel methods described in Section
10.2 this may sometimes provide a useful representation of the data objects.

??? Show some Kernel PCA here or in PCA Chapter???.



Chapter 6

Directions for Visualization

Euclidean space
3-d toy example???
Scatterplot Matrices? Need to refer to previous �gures
Visual PCA of toy eg
Coloring of clusters � value of PCA
d=4000 coordinatewise vs. PCA
Limitations of Heat Maps
Curves vs. matrix views
Axis Scaling (e.g. Correlation PCA)
PCA not enough Apple Banana Pear Example
NCI60 data (including DWD directions, maybe MD?)
Fourier Subspace � Yeast Cell Cycle Data � Pointer to Smoothing Chapter
Independent Component Analysis
Classi�cation Directions
Known modes of variation � Kingsolver Caterpillars
Handling of Non-orthogonal directions in scatterplot matrices. E.g. in Fig-

ure 2.18.
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Chapter 7

Manifold Data Analysis

Toy example on circle to illustrate why need manifold view for directional data.
Connect with Chpater 5, e.g. for Frechet methods.
General theory: extrinsic versus intrinsic, Patrangenaru and Ellingson [165].

Give circular data example and discuss

7.1 Shapes as Data Objects

� Landmark representations o Equivalence Relations
o Equiv. Classes / Orbits as data objects
� Representations (landmark, boundary, medial)
� Manifolds & geodesics
� Circular Data
� Frechet mean (set) (relation to robust statistics)
� Image Analysis
� Bladder � Prostate � Rectum data
� PCA for S-reps (di�ering levels)
� Variation on landmark based shape � Focus on translation, shape is nui-

sance
� PNS
� Backwards PCA
o Desirability of Nesting
o NMF
o NNCA
o Principal Curves � Manifold Learning
o Sequence of Constraints
Make sure have lived up statements in 1st paragraph of Chapter E.

7.2 Covariance Matrices as Data Objects

Dryden's multiple metric, and varying geodesics.
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Sungkyu and Armin's non-geodesic paths.
Piercesare's spatially indexed covariance matrices

7.3 Material from Old Chapter 1

While it is possible to attempt analysis of angle data in the ambient space, i.e.
to treat points on S2 as lying in R3, a major problem is that analytic methods
such as PCA tend to leave the space where the data lie. One approach to this is
called extrinsic analysis, see Patrangenaru and Ellingson [165] for good overview
of this approach. The idea is to do the statistical analysis (e.g. the mean or
PCA) in the ambient space and then project back to the curved manifold. This
approach works well when the data lie in a small region of the manifold where
there is not much curvature, so there is little distortion caused by the extrinsic
approach.

When the data are distributed more broadly across the manifold, curvature
matters more, which has motivated intrinsic analysis methods. One of these is
the Principal Geodesic Analysis (PGA) of Fletcher et al [76]. The main idea of
PGA is to consider the Euclidean PCA basis as a set of orthogonal lines that
(sequentially) best �t the data. In PGA these best �tting lines are replaced by
best �tting geodesics (e.g. great circles on S2) which are a natural analog of lines.
A deliberate choice that was made in PGA was to consider only geodesics passing
through the Fréchet mean (the minimizer of the sum of squared distances along
the manifold to the data). That restriction allowed straightforward computation
of PGA, through consideration of the tangent plane, where the log map can be
used to represent geodesics as lines in the tangent plane, where PCA can be
performed, and then mapped back to the sphere using the exponential map.
The results of a PGA, based upon n = 17 medial representations from a single
patient are shown in Figure Q. ??? This has a little overlap with Chapter 1???

More recent research in medial shape models has gone in two important
directions. First, as discussed in Damon [47, 48], Gorczowski et al [85] and Pizer
et al [176], medial shape representations are more broadly applicable, and easier
to implement and work with, when the medial assumption is weakened to allow
models that are only approximately medial, called skeletal shape representations.

The second major recent research direction has been major improvements in
statistical methodology that have been realized through improved integration
with the underlying geometry. These recent methods fall into the intrinsic class
of methods discussed in Patrangenaru and Ellingson [165]. Intrinsic versions
of PCA have seen a series of innovations, that have yielded major statistical
successes for skeletal shape representations.

Huckemann et al [107] made the important observation that the e�ectiveness
of the PGA tangent plane analysis of Fletcher et al [76] was strongly tied to
the quality of the geodesic mean (also sometimes called the barycenter or the
Fréchet or Kärcher mean) as a notion of center-point. To see how this quality
can be very poor consider a toy example, where the data objects are distributed
along the equator of the ordinary sphere S2. Because the geodesic mean is the
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point (or points, as this may not be unique) that minimizes the sum of squared
distances (measured as arcs along the surface of the sphere) to the data objects,
it will be both the north and south poles, as long as the data are su�ciently
distributed around the equator. This is because least squares penalizes most
strongly against large distances. Not only is the geodesic mean an unintuitive
notion of data center, it is also exceptionally poor as a point of tangency for a
PGA analysis. The reason is that the log map projection of the data objects
onto the equator form a circle (centered at the geodesic mean). This has the
unattractive property that it requires two modes (two PGA components) to
quantify the variation. This seems ine�cient because the data distributed on
the equator of S2 are one dimensional (in the sense of following a one dimen-
sional curve in the high dimensional space), and thus should be describable by
just a single component of variation, resulting in much more e�cient statistical
analysis (e.g. Bayes model �tting). The solution of Huckemann et al [107] was
to consider all geodesics in modeling the data, thus moving beyond the restric-
tion of PGA to only geodesics going through the geodesic mean. An interesting
point here is that the �rst Euclidean PCA component can be viewed as the line
that best �ts the data, which will necessarily contain the sample mean, as easily
seen using an analysis of variance decomposition of sums of squares. However,
in non-Euclidean situations (e.g. data objects lying on curved manifolds) this
is no longer true, so a conscious decision needs to be made. In particular the
use of PGA entails the restriction to geodesics to those which go through the
geodesic mean. The Geodesic PCA proposal of Huckemann et al [107] considers
all geodesics, which thus takes the equator in the toy example, resulting in a
more appropriate one dimensional representation of the data.

The above toy example of data objects lying on the equator of S2 may appear
to be arti�cial, but related modes of variation are actually frequently important
to medial and skeletal shape representations, as demonstrated in Figure R. The
left panel of Figure R shows the distribution of a single spoke over a number of
realizations from the bladder-prostate-rectum simulator model of Jeong [112].
Note that the data are quite broadly spread over the sphere, as in the above
discussed toy example.

Figure R also demonstrates a limitation of Geodesic PCA. This is that the
spoke variation does not quite follow a great circle (i.e. a geodesic such as the
equator in the above toy example), but instead follows a small circle, so the
Geodesic PCA �t still requires two modes of variation as shown in the center
panel. This motivated the Principal Arc Analysis proposed by Jung et al [117],
which generalizes Geodesic PCA to allowing both small and great circle �ts to
the data. The bene�t of this is shown in the right panel of Figure R, where only
one mode of variation is needed to fully model this data set.
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Figure R: Variation of a single spoke, from a bladder-prostate-rectum simu-
lator model. Left panel shows the spherical component. Center panel shows the
results of a Geodesic PCA summary, requiring two modes of variation. Right
panel shows the corresponding PAA analysis, which is much more e�cient since
only one mode of variation is needed.

The idea of using small circles to give an analog of PCA was extended to
higher dimensional spheres, Sd for d > 2, by Jung et al [116], to give a method
called Principal Nested Spheres (PNS). In the special case of S2 PNS gives the
result show in the right panel of Figure R. Another important contribution of
PNS is that it was the �rst example of Backwards PCA. In particular, for d > 2
the �rst step of PNS is to �nd the sub-sphere of dimension d−1 that best �ts the
data, in the sense of minimum sum of squared residuals (distance measured as
arcs along the surface of Sd). Those signed residuals are kept as the highest level
PNS scores. This process is then repeated iteratively down through dimension,
to generate a full set of PNS scores. The �nal projections to S1 play the role
of PNS 1 scores. One more feature worth noting is that the geodesic mean of
the PNS 1 scores is a compelling notion of center called the backwards mean. In
particular, for the above toy example of data distributed around the equator of
S2, the backwards mean is the quite reasonable geodesic mean computed along
the equator of the data.

A detailed study of the backwards PCA idea can be found in Damon and
Marron [49]. The main idea is that ordinary Euclidean PCA can be calcu-
lated either forwards (by starting with lower dimensional �ts and building up)
or backwards (starting with the full data, and successively �nding best �t-
ting subspaces), since both just involve components of the eigen-analysis of the
sample covariance matrix. However, this equivalence is essentially due to the
Pythagorean Theorem, which no longer holds in non-Euclidean contexts. In
that case, backwards methods are no longer the same as forwards. Damon and
Marron [49] reviews these ideas noting that the backwards approach seems to
more frequently give more useful methodologies. An intuitive basis for this
observation was developed through viewing PCA in terms of a nested series
of constraints. The success of backwards methods is interpretable in terms of
it being relatively easy to sequentially �nd constraints, as done by backwards
methods. On the other hand, to compute a forwards method one needs to know
the full sequence of constraints in advance, and then sequentially relax them,
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which takes much more e�ort. An important contribution to the discussion of
backwards versus forwards PCA is the Barycentric Subspace Analysis idea of
Pennec [166]. The main idea is that both backwards and forwards methods are
essentially greedy searches, which one expects can be improved by solving an
overall optimization, although that comes at the price of increased complication.



Chapter 8

FDA Curve Registration

Either provide PCA promised in Section 4.4, or change that part to no longer
say it is here.

On PCA, consider showing reconstructions at several eigen-levels, to make
point that scree plot leading to number of eigencalues can be slippery (using
this same toy example, or need another?). Include a scores plot to make point
about �actually lower dimensional�.

Probably should coordinate all this with Fig. 1.8, which shows pretty similar
example. Maybe Chapter D version is best, and should be used everywhere?

� Many approaches
� Fisher-Rao registration
� Data Object Choices
� Chemical Spectra
� PNS on SRVF sphere � blood glucose data
Milan group combine clustering & curve registration
Make sure have lived up statements in 1st paragraph of Chapter E.
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Chapter 9

Tree Structured Data Objects

� Brain Arteries
� Approaches
o Combinatorics
2-d embedding � D-L visualization
o Dyck Path
o Phylogenetic approach
o Persistent Homology
Make sure have lived up statements in 1st paragraph of Chapter E.

9.1 Phylogenetic Trees

Discuss strong curvature, as refered to in Section 5.2. Show pics on this from
Zhai [240]. Come back to interesting task for visualizing such data in a curved
MDS embedding space.
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Chapter 10

Classi�cation

MD was used (and explained in Section 4.3)
DWD was usd in Section 2.2.2

10.1 Classical Methods

Mean Di�erence
FLD
Maximal Data Piling
Gaussian Likelihood Quadratic

10.2 Kernel Methods

10.3 Support Vector Machines

10.4 Distance Weighted Discrimination

� Stat vs.CS viewpoints & approaches
� Mean Di�erence & Naïve Bayes
� Fisher Linear Discrimination
o Nonparametric Derivation
o Mahalanobis Interpretation
o Likelihood Derivation
� Gaussian Likelihood Ratio
� Principal Discriminant Analysis (Generalized eigenanalysis)
� HDLSS Discrimination � Generalized Inverses
� Increasing dimension movies
� Maximal Data Piling
o Low dimensional equivalence to FLD
o Good performance in autoregressive case
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� Kernel Embedding
o Polynomials
o Radial Basis functions
o Explicit vs. Implicit
� SVMs
o In�uence & Robustness
o Tuning
� DWD
o Faces
o Simulations
o HDLSS analysis
o Tuning Parameter vs. SVM
� High d asys and kernel methods
� Radial DWD
� Random Forests / Neural Nets
o Value of Linear Methods
� Mean Di�erence
� Melanoma Data Classi�cation & ROC curves
� Suman Sen Manifold Classi�cation
� Batch Adjustment
o Perou Breast Cancer Data � visualizations
o DWD adjustment
o NCI 60 data
Include mean & sd
Cross-validation & Various �avors. Get �fold� terminology right.



Chapter 11

Clustering

Pointer to clustering done around Figure 2.13 (RNAseq example)
Milano Clustering curce registration
HDLSS theory for clustering Borysov et al [26].
Integrative Clustering & JIVE, Hellton and Thoresen [99]
� Unsupervised vs. Supervised Learning
� Find by PCA (Mass Flux Data)
� Verify with SiZer (or give pointers???)
� Dependent SiZer � Internet Data
� K-Means Clustering
� SWISS score
� More than 2 classes (relate to Princ. Disc. Anal.)
� Hierarchical Clustering
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Chapter 12

Con�rmatory Analysis

Con�rmatory analysis is a nearly completely dominant part of classical statistics,
as typically taught in modern courses. Much of this is based on �tting paramet-
ric probability distributions to data, and basing inference such as hypothesis
tests and con�dence intervals, on such distributions. As noted in Marron [148],
this approach lies at the roots of the scienti�c method, which has provided great
bene�ts to science over the years.

So far this approach has not been well developed in OODA contexts, often
because in many OODA data settings such as the manifold data objects of
Chapter 7 and the tree structured data objects in Chapter 9, suitable probability
models are not yet in common use. However as shown in Figures 2.19 and 2.20
from Section 2.3, statistical con�rmation is a critically important task, to ensure
that non-spurious structure have been discovered. Two main approaches to this
are discussed in this chapter. The DiProPerm hypothesis test, for testing the
di�erence between two previously labelled subgroups is discussed in Section 12.1.
While it is tempting to use DiProPerm to assess the signi�cance of subgroups
found by clustering methods, it is seen in Section 12.2 that this can be quite
inappropriate. A test for signi�cance of clustering, that is appropriate in the
challenging high dimensional context, called DiProPerm, is described in Section
.

12.1 DiProPerm

o Toy Examples
o Caudate & Gene Expression
o Choice of:
Direction
Statistic - Susan Wei analysis
Compare power with other methods, e.g. Jinting's
o Revisit Drug Discovery data
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Great examples appear in Bioinf/GeneArray/TCGA-PanCan, as output from
PanCan2.m. Note some of this appears in Section 4.3.Those used n1-n2=30 re-
duced data set, to show how log transformed version was better than raw counts.
Would be interesting to generate picture along the lines of PanCan2ip6DiProPermDWDraw-
ns30.ps, showing how DWD gives big boost over MD.

Include graphic for data shown in Figure 2.20. This is already computed by
OODAbookChpBFigT.m, and should be like OODAbookChpBFigT-ShowDiProPerm.ps.

12.2 SigClust

Show example of �why no DiProPerm on cluster labels?�
Stress di�erence between �previously de�ned known group labels�, and those

discovered by clustering
o Assumptions
o Q-Q plots (here or new earlier section?)
o Diagnostics
o Examples
Other approaches and comparisons
challenge of �what is a cluster?� uniform distributions, outliers, ...



Chapter 13

High Dimension Low Sample

Size Analysis

Interesting work on consistency of scores: A particularly interesting character-
ization of the usefulness of PCA scores can be found in Hellton and Thoresen
[100]. Hellton and Thoresen [?] explore the impact of measurement error on
HDLSS scores.

� Points on Simplex
� Conditions (mixing, etc. & GWAS)
� Covariance 0 not independence (Gaussian & scale mixture)
� PCA
� DiProPerm insights
� Connection to Concentration of Measure
Remeber to explain, and quantify di�erence apparent in Figure 2.20.
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Chapter 14

Smoothing

Controversies: smoothing methods, smoothing parameter selection. Härdle and
Schimeck [94].

L1 view of density estimation, Devroye and Györ� [55].
Density estimation books, Silverman [197], Scott [191], Wand and Jones

[222],
� Main focus: Bumps
� Histograms & Limitation
o Stamps (Incomes) Data
� Kernel Density Estimation
o Chondrite Data
o Stamps Data
� Local Linear Regression
o Fossils Data
Con�rmatory analysis: Silverman's mode test, Silverman [196], SiZer Chaud-

huri and Marron [39, 40], SSS Godtliebsen et al [83, 84].
Computation: Silverman's FFT, Silverman [198], Gasser and Seifert , Fan

and Marron [66].
Exact risk analysis, Marron and Wand [144], Marron et al [150].
References to include
Jump SiZer of Kim and Marron [119]
Other smoothers
Wavelet SiZer of Park et al [164].
Bayesian Wavelets of Kohn at al [122].
Error Criteria, MISE, etc., L1...
Visual Error Criterion of Marron and Tsybakov [143]
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Chapter 15

Robust Methods

Main Issue: handling violations of classical assumptions. Most often: Gaussian-
ity versus outliers

Main controversy: outliers are �useless, thus completely discount� versus
�outliers are too in�uential, thus downweight, but still should be allowed a vote.

� Cornea Data
� Outliers in PCA
� Zernike basis � Number of basis elements
� Outlier Deletion
� Spherical PCA (Oja's signs & ranks)
� Elliptical PCA
� Toy PCA Outliers
� Multivariate Medians (many, esp. DataDepth)
� Parallel Coordinates motivation of Elliptical PCA
� GWAS & L1 PCA
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Chapter 16

PCA Background and Details

PCA as visualization more important than �dimension reduction�.
Point out the renamings of PCA, as mentioned in Section 2.2.
Gaussian Likelihood (go through math & point out seriously misleading as

stated in Section 2.2)
Carefully de�ne loadings and scores
� SVD relation (including graphic, and Lingsong's paper on centering and

Ian Carmichael's sparse PCA computation, even with mean adjustent (sparse
matrix plus low rank matrix)

� Di�ering rank SVD representations
� Graphics & Math of PCA Optimization
� Connect Math & Graphics (probably should refer to example in Figures

2.1-2.4)
� Redistribution of Energy (ANOVA sums of squares)
� Correlation PCA (or already done in Section 2.2?)
� Compare with SVD (= uncentered PCA)
� PCA Data Representation (Full Rotaton? Reduced Rank?)
� PCA Simulation
� PCA visual direction choice (with e.g.)
� Dual PC(same e.v.s) (Include dual of Spasnish Mortality?) Gabriel's Bi-

plot? Gram matrix
Centering issues, row & column mean
PCA limitations, apple-banana-pear, and pointer to NIC 60 example
Cite:
Generalized PCA Book
Kernel PCA
Integrating PCA with directions of maximal smoothness, in the context of

evolutionary biology, Gaydos et al [80].
Point to related areas, such as Bollen's structural equation modelling.
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Chapter 17

Multi-Block Methods

� "Dependence" is critical
o Popular notions and measures, such as Pearson's correlation, and covari-

ance matrices, are inadequate quanti�cation
o (Anscombe's quartet)
o Two Important types of Dependence (say this earlier???):
o Dependence along vectors in descriptor space o Dependence between data

objects ("Random sample" vs. "Time series of data objects)
� Partial least squares "Principal Singular Components" (Mueller paper,

Byeong Park talk in Berlin, Enno meeting) SAME(?!?) as Partial Least Squares.
� Canonical Correlations
� JIVE:
� Spanish Mortality Males and Females. Pointer back to Section 1.1.
� Lobular Freeze Analysis
Relationship to other methods?
CCA, etc.
Gabriel's biplot?
Integrative Clustering, Hellton and Thoresen [99].
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Acknowledgements:
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Appendix ideas:
Basics:

� Linear Algebra

� Multivariate Probability

� Inner and Outer Products

� Principal Angle Analysis???

Colors

� Heat Map visualizations

� Rainbow colors schemes, RGB & HSV

� Topological Colors: blue, lt green, darker green, light brown, darker
brown, pink, white
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